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Abstract—VML (Virtual Machine Language) is an advanced
procedural sequencing language which simplifies spacecraft
operations, minimizes uplink product size, and allows
autonomous operations aboard a mission without the
development of autonomous flight software. The language
is a  mission-independent, high level, human readable
script. It features a rich set of data types (including integers,
doubles, and strings), named functions, parameters, IF and
WHILE control structures, polymorphism, and on-the-fly
creation of spacecraft commands from calculated values.

VML has been used on six JPL deep space missions. It is
currently in use on  Mars Odyssey, Stardust, Genesis, and
the Space Infrared Telescope Facility (SIRTF). It is slated
for use on the 2005 Mars Reconnaissance Orbiter. The
language and associated flight code has allowed spacecraft
operations teams to place autonomy aboard deep space
missions, implemented as operations products (blocks and
sequences).

The flight component of VML is implemented in C. This
flight code interprets binaries produced by the ground
component. It runs on a scheduled basis (typically 10 Hz)
within the flight code, providing a configurable number of
parallel threads of execution (typically eight, up to 65,533).
The flight component responds to commands to load files,
begin and end execution, save and restore global variable
values, and set error responses. The VML flight component
can issue spacecraft commands using parameter values and
local variables within blocks and sequences. Hooks can
invoke special-purpose mission-specific flight code from
sequences.

This paper lays out language constructs and capabilities,
code features, and VML operations development concepts.
The ability to migrate to the spacecraft functionality which
is more traditionally implemented on the ground is
examined. The implications for implementing spacecraft
autonomy without the need for expensive flight software
agent development is also discussed.
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1. INTRODUCTION: SEQUENCING

Spacecraft frequently require some ability to perform actions
initiated by commands. Commands may be immediate
(directly executed after being issued by ground control) or
timed (executed at a specified time after uplink to the
spacecraft). The execution of timed spacecraft commands is
known as sequencing [1].

Sequences are typically represented in a planning interface
within the ground system, translated to an uplinkable form,
radiated to the spacecraft, loaded by some means, then
executed. Sequence execution results in the issuance of
commands to the spacecraft in some timed order.

Some older spacecraft (for instance, the Solar Mesosphere
Explorer [2] [3], flown by the University of Colorado) used
hardware sequencers, in which the flight computer managed
time tags directly attached to each command, and checked
for command times using logic circuitry. More modern
spacecraft with real-time operating systems and preemptive
task scheduling implement sequencing as a software
component. This paper focuses on this latter arena.

The features implemented in the generic flight software
sequencing capabilities profoundly affect the complexity of
operating the spacecraft, the size of the team necessary
implement sequences, the operations able to be undertaken,
the frequency of uplink, and the size of uplinked products.



Virtual Machine Language (VML) sequencing carries a
number of distinct advantages over  more traditional
sequencing architectures, in both capability, personnel time,
and cost. This paper will describe VML components,
capabilities of the language, its use on NASA JPL deep
space missions, and implications for spacecraft autonomy.

2. TRADITIONAL SEQUENCING  MODEL VS. VML MODEL

In general, spacecraft sequencing can follow one of two 
models: timed command or procedural.

Timed command sequencing

The more traditional (non-VML) timed command approach
uses a fixed set of timed command locations which are
continually checked to see if any particular command is due
at any particular time, illustrated in Figure 2-1.

Figure 2-1: Traditional sequencing instruction store

All due commands are identified and fired off on the same
clock tick. This approach does not segregate commands to
be issued into functional units (i.e. routines), and the
parallel nature of the execution makes developing
parameterization, logic, and decision-making problematic.
Branching to labels is sometimes implemented in this
model, but the resulting sequences can feature spaghetti
logic and unintended code path interactions. In addition, the
lack of functional units results in a lack of private variable
space. All variable use for calculation must be allocated and
checked for collisions between desired activities. Enforcing
separate spaces for all but the most rudimentary activities
becomes difficult, and is not inherent to the model.

Procedural sequencing

By contrast, the sequences developed in VML are procedural
in nature. At any particular time, only one instruction is
considered to be "next" on a sequence engine. This allows
named sequences which can be called using parameters, easy
creation and evaluation of logic constructs, and an implicit
ability to branch and loop. Parallelism is achieved by
instantiating a fixed number of sequence engines, and
explicitly loading and running sequences as threads on those
engines. These kind of sequence engines are called virtual

machines. They resemble a CPU which can interpret
instructions, with memory, dynamic data storage
implemented as a stack, and an instruction pointer (see
Figure 2-2). Some number of machines are instantiated for
the mission. These machines limit the number of threads of
execution which can operate in parallel.

Figure 2-2: Virtual machine sequencing instruction

Each engine is used for two distinct purposes: storing
sequences, and executing sequences. When a file containing
a VML module is loaded into an engine, the named
sequences (called functions) within that module become
available for running on any engine. They are invoked by
name    rather than in index. In some cases, the function is
executed on the same engine in which it is stored, as shown
in Figure 2-3. 

Figure 2-3: Function running on same engine as stored

In other cases, the function is executed on a different engine
than the one in which it is stored, as shown in Figure 2.4.
This would be the case for a function calling another
function in a library stored on a different engine.
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Figure 2-4: Function running on different engine than stored

3.  VML COMPONENTS

The Virtual Machine Language system consists of several
components working in concert to provide a programmable
spacecraft capability (see Figure 3-1 below).

Figure 3-1: VML components

VML compiler

The user creates functions as text using a text editor, or a
front-end generating tool. The text is translated by the VML
compiler according to generic VML constructs and mission-
specific definition files for allowed global variable names
and constants.

The VML compiler also uses mission-specific command
translation and time translation tools. The command tool
takes a human-readable string representing a command to be
translated, and passes back the binary value able to be
interpreted by the spacecraft command software. The time
translation tool is invoked whenever an absolute time is
encountered in the sequence. The time translation tool
reconciles spacecraft and earth time in order to account for
clock skew in the sequence products.

The VML compiler is a program which runs within the
ground system on a Solaris 7 platform. It has been
developed as JPL Category A SEI level 3 code, with
appropriate methodology, documentation, review, and
testing.

VML flight component

The resulting binary is ingested by the VML flight
component. The flight component is used in two
environments: as flight software running in a test lab or on
the actual spacecraft, and in a faster-than-real-time execution
environment called Offline VM (below).

The VML flight component runs as an embedded task under
VxWorks or similar real-time operating system within the
flight software. It works in concert with the rest of flight
software, dispatching commands to other flight software
tasks in order to affect changes to the spacecraft behavior.
The flight component has been developed in a manner
compatible with JPL Category A SEI level 3 code, with
appropriate methodology, documentation, review, and
testing.

Offline VM

Offline VM is a faster-than-real-time tool which runs in the
Solaris 7 Unix environment. Originally developed as an
informal flight software testing aid, it has proved
sufficiently useful as a sequence test tool that it is currently
being redeveloped as JPL Category A SEI level 3 code,
with appropriate methodology, documentation, review, and
testing.

Offline VM encapsulates the flight code with a user
interface. It is able to ingest sequences that have been
produced by the VML compiler. The clock within Offline
VM is harnessed and entirely under the user's control.
Virtual time  in this environment can progress several
thousand times real-time. This allows the user to progress
time for a known period, stop and examine the state of the
sequence engines, perform disassemblies of sequence
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binaries, study command issuance times, inject spacecraft
behavior into the state of global variables, and resume
execution at will.

Since Offline VM runs on an ordinary workstation, it is an
easily distributed and very low-cost tool. The high expense
of maintaining  and coordinating access to a full-up software
test lab (STL) featuring a real flight computer makes Offline
VM an attractive alternative for iteratively developing and
debugging sequence logic. Mars Odyssey and SIRTF use
Offline VM in exactly that fashion, performing dozens of
development iterations in the Offline VM environment
before testing the sequence in the expensive and over-
subscribed STL.

4.  VML CONSTRUCTS

The procedural orientation of virtual machines allows
sequences to be expressed using a number of high-level
language constructs. These constructs form a simple but
powerful scripting language in which users can express
desired spacecraft activities using named functions, with
parameters, a variety of data types, and a rich set of
operators.

Modules

A module is a container for one or more functions, along
with optional persistent storage.

Modules partition the functionality of the problem space
into manageable chunks. For instance, a library module may
contain several reusable blocks for controlling instruments
and performing communications activities. A daily absolute
sequence may reside as the only function in another module,
since it is changed out with regularity.

One module exists per file input to the VML compiler. This
same module is defined in a flight-compatible format in the
VML compiler output file.

Functions: Blocks, Relative and Absolute Sequences

Function is the generic term for a sequence containing
absolute and/or relative time tags. A function is a named
executable chunk of VML which may accept parameters.
Functions may also return values to a calling function.

An absolute sequence contains one or more statements with
an absolute time tag. Absolute sequences may be run only
once: since time always increases, executions after the first
execution will cause instructions to be late.

A block is a function that is intended to be reused (and
frequently is stored onboard the spacecraft). Blocks contain
only relative time tags so that when they are executed none
of the statements are late.

A function that contains only relative time tags between its
statements and is not intended for multiple uses is called a
relative sequence. Relative sequences contain only relative
time tags so that they may be kicked off at any time

without being late. Relative sequences are frequently
autogenerated by ground-based tools for activities like
aerobraking maneuvers or daily operations which are
planning dependent.

Time

Time may be specified in several formats: as absolute (wall-
clock time), spacecraft time in seconds, and relative time in
hour/minute/second form. Each instruction has a time tag
which acts as a delay between its execution and the
completion of the previous instruction.

The flight software component of VML executes statements
at a time resolution configured at compile time, and
frequently set to 0.1 seconds. Zero time tags (no delay) are
allowed between instructions: they will execute in order, but
on the same time tick.

In addition, mathematical operations on time are available
for calculating delay values needed in DELAY_BY and
DELAY_UNTIL statements.

Variables

Several different scopes of variables exist in VML
sequencing: local, module, and global.

Local variables are defined within functions, and are not
visible by name outside the function. Each instance of an
executing function contains fresh copies of its local
variables.

Module level variables are visible by name to all functions
defined in the module, and have persistent data values until
the module is unloaded from the engine.

Global level variables are visible by name to all functions,
and to flight software. Storage in global variables is
persistent. Global variables are used for event-driven
sequencing, allowing sequences to respond to environmental
changes in the spacecraft.

Variable types include integer, unsigned integer, floating
point double, logical, time, and string. Variables may be
assigned regardless of type: all assignments of different
types result in meaningful values to the assignee. This
runtime flexibility removes many constraints with which
operators would otherwise have to deal, and results in less
complicated sequences.

Operators

A wide variety of operators is available in VML. Arithmetic
operators include absolute value, negation, addition,
subtraction, multiplication, division, modulo, and power.
Bitwise operators include and, or, exclusive or, invert, shift
left, and shift right. Logical operators include and, or,
exclusive or, and not. String operators include length, split
left (returns substring from start of string up to and
including given character position), and split right (trailing
substring starting at given character position).



At present, the most complex expression is one including a
binary operator, e.g.

R00:00:00.1     max := 15.5 + try
Expressions with precedence may be incorporated on a
future mission.

Conditionals

VML includes an IF construct which can be used for
choosing a code path based on variable values. This
selection allows logical evaluation of multiple conditions
using ELSE_IF and ELSE statements. The IF construct is
particularly useful for reacting to parameter values passed
into a function, calculated local variables, and global
variable values.

Loops

A WHILE loop is available for structured conditional
looping. This construct can be used to repeat a set of
statements until a condition becomes TRUE or FALSE.
This construct also allows repeating a set of statements a
specific number of times using a counting variable.

Event-driven Sequencing

The WAIT and TEST_AND_SET statements are used to
detect events represented by global variables.

The WAIT statement suspends operation of the function
until its condition is met, then resumes execution of the
function at the next instruction. This instruction is
particularly useful for non-deterministic sequences which are
related to real-time events: rather than assuming worst-case
timing, the sequence can be designed to execute with a
minimum of wasted time.

TEST_AND_SET is used on a counting semaphore for
managing a shared resource. This is a classical real-time
programming access problem [4]. An example use might be
to enforce mutually exclusive access to an instrument suite
by two separate, non-deterministic sequences. Using a check
with a conditional followed by a subtraction leads to an
intractable race condition whereby both blocks could
complete the IF check before setting the semaphore with the
blocking value. TEST_AND_SET allows an integer global
variable to be checked and decremented in one instruction,
preventing this race.

Both event-driven constructs allow an optional timeout to
prevent infinite waits and force an upper bound on execution
times.

Call: in-line function execution

A function may be executed in-line from another function
using the CALL statement. The calling function is
suspended, the caller is executed, and then the calling
function resumes. The caller may pass parameters to and
receive return values from the called function as appropriate
using a RETURN statement. Relative time tags for the
statement after the CALL indicate the amount of time from
the completion of the CALL statement.

Calling does not start a separate thread of execution or use
another sequence engine. Instead, resources on the calling
engine continue to be used to maintain the thread of
execution. Refer back to figure 2-4. This figure shows an
engine using code that is stored on another engine (e.g. a
master sequence calling a block in a library). The instruction
pointer contains a value that indicates code residing on a
different engine, but the instruction pointer itself resides on
the same engine.

Calls may be nested arbitrarily deeply, limited only by data
stack space on the calling engine. However, call depth
greater than about three become difficult to evaluate, and can
make understanding the timing of the sequences
problematic.

Spawn: New Thread of Execution

A new thread may be created to run in parallel with existing
threads using the SPAWN statement. The spawning
function may pass parameters to the spawned function, but
no return value is possible. Unlike CALL statements,
SPAWN statements complete on the same tick of the clock
at which they are invoked. The spawned function is
scheduled for evaluation on the next time tick.

Spawning is useful when an activity needs to be initiated
that is functionally separate from the initiator, and contains
no intrinsic ordering requirements relative to the initiator.
For instance, a master sequence may need to initiate
downlink at a certain time, but continue to manage
instrument observations. If the downlink activities are
consolidated in a block, the master sequence can simply
spawn the downlink block, then continue on with its usual
management tasks. This approach simplifies development of
the master sequence by eliminating the interleaving of
activities within the body of the sequence. It also allows the
functionality of the downlink activity to be abstracted into a
block, tested, then repeatedly used.

Constant Commands

Commands are specified either in a untranslated form,
which can be passed to a mission-specific translation tool,
or a pretranslated form, wherein some tool has specified the
binary pattern of the command for inclusion in the
sequence. Command syntax varies from mission to
mission, but VML can handle any commanding regime so
long as the binary size of the command can be calculated.

Dynamic Commands

Commands may be built on the fly by the VML flight
component based on parameter and variable values. Any
command defined in the system that can be interpreted by
the flight software can be built with a special external call
"issue_cmd". Dynamically built commands values are
validated according to the same rules built into the ground
system, thereby protecting the spacecraft from
miscalculations. Invalid command parameter values result in
a command error and will abort a thread of execution if
aborts are enabled.



5.0 SAMPLE CODE

Below appears a module containing a sample block called
acquire_star that is part of a larger library. Other blocks in
this module have been abstracted away by the ellipses (...).
This example shows most of the major constructs of VML,
including parameters, local variables, a variety of variable
types, comments, loops, conditionals, dynamically built
commands, calling, and event-driven sequencing. Each
statement in the body of the block has a time tag expressed
in time format down to tenths of a second, with timing
relative to the completion of the previous statement.

MODULE

BLOCK acquire_star
    INPUT ra    ;right ascencion
    INPUT dec   ;declination
    INPUT file
    INPUT acq_failure_delay
    DECLARE INT try := 0
    DECLARE INT acq := -1
    DECLARE DOUBLE max := 0.0
BODY
R00:00:00.1 WHILE try < 3 DO
R00:00:00.4     ISSUE STAR_TRACKER RESET, 0x32
R00:00:05.4     EXTERNAL_CALL "issue_cmd" "ACQ",ra,dec,file

R00:00:00.1     max := 15.5 + try
R00:00:00.1     acq := -1
R00:00:00.0     acq := WAIT gv_star_acq >= 0 TIMEOUT max

R00:00:00.1     IF acq = -1 THEN
R00:00:00.1         CALL record_failure tries, ra, dec
R00:00:00.0         DELAY_BY acq_failure_delay
R00:00:00.1     ELSE_IF acq = 0 THEN
R00:00:00.0         DELAY_BY 11.5
R00:00:00.0     ELSE
R00:00:00.1         return TRUE   ;succeeded
R00:00:00.0     END_IF

R00:00:00.1     try := try + 1

R00:00:00.0 END_LOOP

R00:00:00.1 RETURN FALSE    ;failed

END_BODY

...

END_MODULE

The acquire_start block receives four INPUT parameters and
has three local variables. It attempts to acquire the star three
times, governed by a loop with a counter called try. It
issues a reset command to the tracker, then dynamically
builds an  acquisition command using values passed in as
parameters. It calculates a timeout to use, then waits on a
global variable which indicates that the star has been
acquired. If the acquisition attempt times out, acq remains
at its original value of -1, and the failure is recorded by
calling another block record_failure. If a value of 0 allows
the block beyond the WAIT statement within the timeout
period, another attempt is made. If a positive value allows
the block beyond the WAIT statement, the block returns
with a value of TRUE to its caller, indicating success.

6.  SIRTF UPLINK REDUCTION

The combination of parameterization, variables, a large set
of data types, and dynamic commanding makes it possible
in some cases to reduce the size of uplinked products over
traditional ground-expansion of sequences.

In the case of the Space Infrared Telescope Facility (SIRTF),
the design of the instruments required that large commands
(hundreds of bytes) be transmitted frequently over a serial
line. The exact byte patterns would have to be embedded
repeatedly in a controlling sequence performing
observations, leading to very large ground-expanded blocks
which exceeded available uplink contact time through the
Deep Space Network.

During most of the commanding, however, most of the
parameters in the instrument commands stayed the same.
So, rather than ground expand the instrument commands,
blocks were created that set the observatory to particular
instrument modes, represented by global variable values.
Other blocks were created that accept parameters for the
instrument command values that varied, and dynamic
commands were built from these parameters and the modal
global variables. The controlling sequence then invoked a
block with one parameter, initiating a cascade of activity
which resulted in sending commands to the instruments.

The resulting reduction in uplink allowed the spacecraft to
meet its target DSN uplink allocation, without developing
complex instrument flight software additions or new
sequencing flight software requirements.

7.  SIRTF DATA RETURN INCREASE

In some circumstances, nondeterminism in a physical
process can cause sequences to be designed with an overly
conservative timing, leaving a spacecraft idle when it could
be producing data. If there is a lifespan limit to the
spacecraft, conservative timing leads to less data from the
mission.

The Space Infrared Telescope Facility features both a limited
lifespan and nondeterministic processes. SIRTF uses
coolant to keep its instruments at operating temperatures.
This coolant has a boil-off characteristic that limits the
lifespan of the mission. The pointing process for the
telescope has some event-driven physical characteristics
which make its behavior when settling from target slewing
nondeterministic.

Rather than incorporate worst-case timing, SIRTF uses the
VML WAIT instruction, watching a global variable which
indicates that the spacecraft has settled before proceeding
with instrument observations. Estimates place the increase
in data collection over the life of the mission as high as
10% due to the elimination of small idle timespans.

8.  MARS ODYSSEY AEROBRAKING

Unanticipated events can require a response by the spacecraft
in order to maintain safe operations, or even to survive. The
lightspeed delays communicating with distant spacecraft can
exacerbate the effect of unanticipated threats to spacecraft
safety, as the ground is seeing a snapshot of state tens of
minutes in the past. Due to its flexible logic and ability to
monitor spacecraft state, VML is suited to respond to
threatening events



Mars Odyssey performs several months of aerobraking,
using the atmosphere of Mars to change the orbit of the
spacecraft without using large amounts of propellant.
During the final days, unexpected atmospheric plumes can
dramatically increase the density of the atmosphere, causing
the drag pass drop the orbit of the spacecraft by amounts
which could lead to an unintended reentry.

Sequences monitor each drag pass and can take action upon
an encounter with this sort of drag situation. The response
is to autonomously initiate a pop-up maneuver without the
need for ground intervention, and before the ground could
even physically become aware of the situation. The logic for
responding to an atmospheric plume is built directly into
the sequences, without requiring expensive development of
complex flight software.

9.  IMPLICATIONS FOR MIGRATING AUTONOMY

A full-featured, robust sequencing language like VML has
some profound implications for the location of decision
making in a spacecraft system. The balance between
portions of the system making decisions and taking actions
(flight software, ground operations, and sequences) can
change with the extra capabilities provided by VML.

Because sequences can be developed faster and more cheaply
than flight software, and can be placed onboard more easily,
small amounts of autonomy developed by the spacecraft
operations team can supplement basic flight software
capabilities. An example is the aerobraking pop-up
maneuver on Mars Odyssey discussed previously.

The ability to make logical decisions based on spacecraft
state, calculate values, then take action using dynamically
built commands could find utility in fault protection
detection and response, autonomous guidance, instrument
allocation, and contact management. Using the Offline VM
sequence execution tool, operations could start work on
developing these kinds of sequences earlier in the spacecraft
implementation cycle, well before feature-complete flight
software is available.

10.  CONCLUSIONS

The advanced procedural capabilities in VML simplify
spacecraft operations by allowing functionality of the
spacecraft to be abstracted into named blocks accepting
parameters. Uplink product size is minimized by the ability
to call blocks that implement most of the command steps.
This block approach also allows some autonomous
operations aboard a mission without the development of
autonomous flight software.

Procedural orientation allows sequencing to be approached
as a structured programming problem, which in turn allows
higher quality products to be produced by smaller
operations teams. The use of rapid check-out tools like
Offline VM reduces the modification cycle time of
sequences, allowing the operations development team to
produce products on an accelerated schedule. The potential

for cost savings in deep space missions using the VML
approach is considerable.

Future work includes expansion of the complexity of
expressions in VML beyond binary operations, reduction in
memory requirements for the flight component, and
application of the VML flight and ground components to
new missions.
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