

American Institute of Aeronautics and Astronautics

1

Flight-Ground Integration: the Future of Operability

Dr. Christopher A. Grasso1
Blue Sun Enterprises, Boulder, Colorado, 80302

and

Patricia d. Lock2
Jet Propulsion Laboratory / California Institute of Technology, Pasadena, California, 91109

Flight and ground integration is an ongoing challenge in the development of deep space
mission operations systems. Separate development teams and schedules exacerbate the
problem. Enhancing the operability of the flight and ground interactions has proven to be a
strategy that reduces both cost and risk. One of the first areas of operability addressed has
been the commanding and sequencing system. Virtual Machine Language (VML)
sequencing was developed to improve operability and has now been used on fifteen NASA
deep-space missions, most recently on NASA’s Mars Atmosphere and Volatile EvolutioN
(MAVEN) mission. Onboard adaptation to new missions has taken the form of data-driven
configuration of the VML software for command and variable definitions without changes to
underlying flight code, dramatically reducing cost and risk. Continuity in capability has
allowed new VML mission sequencing to be based on products from prior missions, which
are then modified as necessary to accommodate different hardware capabilities. In
conjunction with the NASA SBIR "Reactive Rendezvous and Docking Sequencer",
improvements incorporated into the various versions of VML since 1998 allow VML scripts
to perform much of the work that formerly would have required expensive flight software
development. The latest version, VML 3.0, has been enhanced to include reactive state
machines for autonomous management of critical spacecraft operations, object-oriented
element organization, and matrix/vector operations.

I. Mission Operations Domain
The mission operations domain of a deep space mission encompasses both the development of the system used

to carry out operations, and the conduct of the operations phase of the mission itself. A Mission Operations System
(MOS) is comprised of a Ground Data System (GDS), which includes the software, hardware, networks, facilities of
the domain, plus the MOS teams, policies, processes, procedures, and training. Figure 1 shows the basic operations
functions carried out for a deep space mission.

It is essential to view deep space mission operations as a function of the mission objectives. Seen in this way,
operations can be thought of as consisting of three items, in priority order:

 1. Collect science data (to achieve the mission objectives)
 2. Operate the flight system (to collect science)
 3. Build, test, and deliver the flight system to orbit (in order to have a platform to operate)
In order to achieve the highest priority, operations personnel must successfully operate the flight system to

collect science data. The more operable the flight system, the simpler and more reliable the operations team’s job
becomes. During development, however, it is easy to lose sight of mission objectives in the drive to build and launch
the flight system. What may be lost is a focus on the achievement of the mission objectives that can only be
accomplished via operation of that system. Operable flight systems are more likely to reach the objectives, and keep
cost and risk down as well.

1 VML Principal, Blue Sun Enterprises, 1942 Broadway Suite 314, Boulder, CO, 80302, Senior MemberAIAA.
2 Group Supervisor, Mission Operations System Engineering, Jet Propulsion Laboratory, 4800 Oak Grove Drive,

Pasadena, CA, 91109, Member AIAA.

American Institute of Aeronautics and Astronautics

2

II. The Problem: Low Operability
A common practice during the development of a mission’s architecture is to shape the Flight and Mission

Operations Systems as if they are separate, stand-alone systems. This practice omits operability – purposeful design
of the flight system to enable operations to be as uncomplicated and trouble-free as possible. Rooted in the long-held
belief that ground and flight systems have little interaction beyond the uplink and downlink external interfaces, the
flight system and ground system development processes are often largely decoupled. Though this may have been
sufficient with simpler spacecraft, the advent of complex flight and ground software suites has made this approach
inefficient, expensive, and high risk.

A. Operability’s effects
In the design of modern flight systems, operability considerations are uneven. Conversations with Mars

Reconnaissance Orbiter (MRO) development engineers have brought to light examples of both strong and weak
operability design in the mission.

One design choice led to two instruments sharing a single interface to the command and data handling system.
When one instrument of the two caused a data overflow problem, both instruments had to stop taking data while the
anomaly was investigated.

Another example involves the MRO onboard data system. Its mass memory had been designed to be extremely
large, compared to earlier Mars missions, in order to support the volume of data MRO was expected to generate.
Normally, this would be an excellent operability choice, providing flexibility in implementing data return strategies.
However, the flight computer processor was not fast enough to easily manage the large number of data items that the
data volume contained. Onboard data store management created significant unplanned workload for the operations
team.

In contrast, the MRO power system is an example of an excellent design that was focused on operability. Early
in the design phase, MRO designers made power system operability a high priority and assigned trades to

Figure 1. A simplified view of mission operations functions, showing the flow of data through the system

American Institute of Aeronautics and Astronautics

3

investigate its design space. As a result, the power system was built with sufficient margin to obviate the need for
daily or weekly power management, relieving the operations team of that common task.

The deficiencies of a poorly integrated flight and ground system typically become apparent in the integration and
test phase when uplink, downlink, and system end-to-end tests are conducted. A test-as-you-fly philosophy also
serves to uncover flight-like problems during system integration. Examples of typical disconnects include sequence
size overruns, memory/storage allocation problems, bus errors and command timing constraints, and out-of-
tolerance flight system behaviors. Flight system idiosyncrasies also surface in this period, adding to changes during
the run-up up to launch.

At this point in development, the flight system is limited to critical changes, driving the standard decision to
move workarounds into operations. Once responsibility has been transferred to the operations team after launch, the
compromised flight system design continues to introduce cost and risk. As shown in Figure 2, system deficiencies
frequently require unanticipated (and unbudgeted) development cost, extra personnel time, and the need to
undertake unnecessarily complex activities on a recurring basis.

B. Operations crossover
The solution to these problems is to

consciously design flight and ground
systems together. In that way,
reasonable trades can be made to decide
the most effective implementation of
operability features, and to budget
accordingly. In some cases, allocating
certain operability challenges to the
operations phase may be more effective,
provided there is time to automate
solutions. In other cases, operations
considerations in early flight system
design can lead to operable systems
with no additional cost. It is a matter of
considering all of the impacts in design
trades, rather than only the traditional
spacecraft-centric impacts. With
complete trades, the results can be
analyzed and implemented by the mission team as a whole.

One of the simplest ways to improve operability is to shift some functions, normally done repetitively on the
ground, to the flight system. When done effectively, this can increase system flexibility and robustness. One such
approach is via the Virtual Machine Language (VML)1-9, 15, 16 sequencing system.

III. Virtual Machine Language for Operations
VML is a processing language tuned to the needs of spacecraft operations. Before VML, operators had little

influence over the way their spacecraft responded to commands, and a very limited set of commanding and
sequencing capabilities. Anomalous or idiosyncratic spacecraft behavior was dealt with via onerous and sometimes
risky workarounds, or by costly flight software changes.

VML provides functionality to allow operators to implement onboard reusable solutions that in the past could
only have been implemented in flight software. VML avoids many of the problems associated with typical flight
software source code developed in C, C++, or Ada, while providing flexibility to implement straightforward
operations. By placing operations onboard rather than using ground-based commanding scripts, VML constructs can
also make decisions locally, reacting to environmental conditions seen by a spacecraft minutes or hours away from
earth in round-trip light speed delay. By using VML for these onboard capabilities rather than flight software, late
changes and idiosyncrasies can be accommodated at minimal cost and risk.

VML provides several methods for commanding and sequencing missions, including sequences, blocks, objects,
and state machines. VML does not run on the "bare iron" of the host microprocessor. Instead, the language is
implemented as a byte code binary, and is interpreted at runtime by onboard software known as the VML Flight
Component. This approach provides a safe sandbox for execution, eliminating many common problems found in
flight software implementations. VML provides operations structure for issuing spacecraft commands, while

Figure 2. Effects development problems have on operations after
development transitions to operations

American Institute of Aeronautics and Astronautics

4

protecting the user against problems encountered with low level languages like C, including accidental assignment,
off-the-end array access, division by zero, type coercion, and missing functions. Ultimately, VML constructs issue
the spacecraft commands required to complete tasks using logic based on time and the conditions present. VML
operates the flight system within the intended constraints and tested capabilities of the flight software, just as the
ground system does. It provides a growing set of features based on mission requests and has been used on fifteen
missions, with more in development.

A. Spacecraft commanding
Commands are directives to the spacecraft, typically represented in a human-readable form and translated to a

binary format. Commands cause the spacecraft to behave in some desirable way for the purposes of science
collection, power management, thermal stabilization, propulsive maneuvers, pyrotechnic firing, and so forth.
Commands may originate from ground-based human operators, flight software elements, or sequences.

Sequencing is the issuance of spacecraft commands from an on-board store that allows the spacecraft to perform
in an automated fashion when no uplink is available, or when light speed delays preclude direct commanding from
the ground. Commands in VML may be timed according to absolute (wall-clock) time and relative time, as well as
in response to conditions on board the spacecraft using a technique known as event-driven sequencing.

B. Heritage
Virtual Machine Language development began in 1997. Five versions have been implemented. VML has been

used or is in use on 15 NASA flight missions to date, including Stardust2, Genesis, Mars Odyssey, Spitzer Space
Telescope3, 4, 8, MRO, Dawn, Phoenix, Juno, GRAIL, MAVEN, OSIRIS-REx, InSight, and the Resource Prospector
Mission RESOLVE instrument package. A timeline of VML use appears in Figure 3.

C. Feature list evolution
The VML flight environment provides multiple threads of execution within one operating system task using a

data-driven construct known as a sequencing engine. VML allows an extensive set of variable types, including

Figure 3. VML heritage timeline, 1997 - 2018, showing NASA deep-space missions and their VML versions

American Institute of Aeronautics and Astronautics

5

integers, floats, Boolean values, strings, and arrays. Arithmetic and trigonometric calculations, logical
manipulations, and matrix operations are available for use. Conditionals may be used to make decisions based on
local values at runtime. WHILE and FOR loops perform iteration. Sequences exist as named functions, which can
accept parameters and have local variables. Functions may be packaged together into a single file loaded onto an
engine in order to associate runtime behavior or to provide libraries of commonly needed services. Objects with
methods package code and data together. Specialized objects called state machines provide a directly executable set

of reactive actions, and can intrinsically coordinate to perform sophisticated autonomy as an expert system. Table 1
shows the evolution of VML features over time.

D. Simple tool chain
The VML tool suite consists of an embedded VML Flight Component (VMLFC), a ground-based VML

Compiler, the Offline Virtual Machine (OLVM) program, and the VML Command Translator. This suite allows
products to be generated, loaded, executed, and tested. The relationships among these VML tools are shown in
Figure 4. A source file containing human-readable VML script is generated using a standard text editor or other tool.
The compiler translates the text file into a loadable binary file, translating commands and times using mission-
specific tools and tracking valid global variables and symbolic constants for the mission. The file produced can then
be loaded by the VMLFC.

Typical development processes run the module under OLVM in order to test and validate the behavior of the
code. User-defined tests can be generated with very little effort by capturing a user-guided session and then
rerunning the test using the extracted user keystrokes from the session. OLVM can be widely deployed on Linux,
Macintosh, and Sun platforms, allowing products to be fully tested before validating them on flight-like hardware in
the less-accessible real-time Software Test Laboratory.

Mission adaptation of the onboard flight component requires the definition of spacecraft commands and
sequencing global variables. This task is performed by systems engineering using the VML Database, then
translating those database elements to various definition files compiled into the flight software and elsewhere using
the VML Configuration Generator. Products created by this process are then incorporated into the VML Flight

Table 1: VML Feature List Evolution

 pre-
VML

VML
0

VML
1.0

VML
1.1

VML
2.0

VML
3.0

Processor Custom PPC,
Sparc

PPC,
Sparc

PPC,
Sparc

PPC,
Sparc

PPC,
Sparc,
Intel

Sequences X X X X X X
Integer data X X X X X X
Reusable blocks X X X X X X
Arithmetic, bit, comparison operators X X X X X
Block libraries X X X X
Floats, unsigned integers, booleans, strings X X X X
If / Else If / Else conditional X X X X
While loop X X X X
Wait on single global variable X X X X
Onboard command generation X X X X
String table (uplink size reduction) X X X
For loop X X
Engine sizing X X
Trigonometric functions X X
Optional time tags X
Command completion X
Object-oriented command / function syntax X
Human-readable ground commanding X
Matrix and vector operations X
Heterogeneous arrays X
Wait on complex conditions X
Select loop for triggering rules X
State machines X
Synchronized state transitions X
Unix-hosted definition tools, web database X

American Institute of Aeronautics and Astronautics

6

Components in the same manner across all platforms, including OLVM, the Software Testing lab flight software
load, and the spacecraft flight software load.

Figure 4: VML tool chain. Human-readable VML translated by compiler into format usable by workstation
OLVM and a flight computer, either in a test lab or on the spacecraft.

E. Reusable blocks and master sequences
One of the most commonly used features in VML is the reusable block. Blocks are named functions that allow

input parameters, and permit only relative timing of statements. This relative timing allows blocks to be reused
without changing time tags within the element. Missions can then write blocks for a wide variety of repeated
activities on the spacecraft, including reaction wheel desaturation, uplink and downlink initiation and termination,
instrument control, aerobraking8, trajectory burns, pointing, battery management, etc.

Once a block has been developed and tested, it can be used as an abstract capability. Blocks are built and tested
according to requirements and flight rules via a user-friendly process similar to (but much simpler than) a flight
software development process. Once tested, there is no need to scrutinize and review a block’s contents on every
invocation. In a sense, blocks act like super-commands for the spacecraft, providing more functionality and
flexibility than simple spacecraft commands.

Blocks are frequently grouped together and stored on an engine as a library. Engineering and science libraries
deal with spacecraft housekeeping and instrument control, respectively. Dividing blocks into two separate libraries
allows the spacecraft operations and science teams easier control over their respective products. Since the libraries
are always present in an engine, the blocks are immediately available to be started via ground command, or to be
called from other blocks and sequences.

A master sequence is a single-use sequence containing absolute time tags that is built to execute during a known
time period. The sequence team typically collects requests from the engineering and science teams to schedule
specific activities aboard the spacecraft, and generates a master sequence to implement an integrated schedule.
Master sequences typically span anywhere from twelve hours (as on Spitzer) to two weeks (as on Mars missions
featuring VML).

Most of the activities within a master sequence involve invoking blocks rather than issuing spacecraft
commands. This simplifies generation of the master sequence, dramatically reduces the time needed to review the
activities, minimizes the size of the file that contains the master, and reduces the probability of violating flight rules
or other requirements.

American Institute of Aeronautics and Astronautics

7

Master sequences may be chained together, wherein the last statement of the current master loads the next
known master by file name. By following a standardized naming convention, the current master sequence is able to
start its successor so long as the successor is loaded onboard sometime before the end of the current master
sequence. In the case of short-duration master sequences, multiple masters may be stored onboard each day. For
longer duration master sequences, new masters may be placed onboard as infrequently as once a month. The
approach taken is spelled out in the documents defining the Mission Operations System.

F. Objects and state machines
VML 3.0 employs new ways of organizing logic and data over its predecessor versions. First among these is the

object. An object combines data and functions into a cohesive package. In doing so, data are represented as
attributes within the object, which is persistent and shared among the functions (called methods) of the object, but
hidden from direct manipulation by other objects or blocks. An object acts like a subset of a block library, but
contains functionality relevant to a more specific domain, rather than having all functionality needed by the entire
spacecraft. As such, an object may be developed by instrument or subsystem personnel, and may be easily updated
without affecting other objects in the system.

Objects allow operations developers to abstract capabilities into VML code intended to deal with just one
subsystem: uplink, downlink, thermal control, attitude control, etc., become candidate objects to be coded. When
operations for a new mission are undertaken, a previous mission's objects may be cloned then modified to reflect the
particulars of the new mission. Objects provide a useful abstraction, allowing detailed changes to be isolated within
individual methods, while maintaining method names that match the preceding mission. In this way, a pre-built
structure for operations is applied from one VML mission to the next. Objects enhance operability by providing a
convenient abstraction mechanism that can be applied from mission to mission.

A specialized object called a state machine has been added to VML 3.0. A state machine is a highly organized
way of constraining activities within the
sequencing domain to behave as a series of
named states transitioning to other states
based on conditions. This causes the system
to behave according to tightly defined
specifications, and avoids accidental
violation of requirements. Using coordinated
state machines allows complex problems to
be broken down into simple, testable
elements that feature simple operational
transparency, and allow the system to be
easily changed and extended.

VML state machines have a graphical
representation very similar to that of Unified
Modeling Language (UML) used in software
engineering, but include the ability to
synchronize transition-taking behavior
among separate state machines. This
synchronization ability allows a set of state
machines to coordinate their actions by
design, and act together as an expert system
to accomplish a goal.

VML state machines have been used to
demonstrate comet and asteroid touch-and-
go missions, lunar landing missions, Mars
sample return automated rendezvous and
docking, coordination of instrument
activities on the RESOLVE instrument
package for lunar regolith characterization
and oxygen production, and a variety of
onboard autonomy applications. An example state machine for performing a hypothetical Mars Sample Return
mission appears in Figure 5.

Figure 5: State machine acting as flight director for
controlling a hypothetical Mars Sample Return mission

American Institute of Aeronautics and Astronautics

8

IV. How VML Addresses Spacecraft Operability
In order for VML to enhance operability, it was designed to be complete, yet adaptable. VML provides a

common feature set on which to overlay needed operations functions. One of the hallmarks of an operable system is
flexibility. VML allows a wide range of flexibility in the commanding and sequencing of a mission. Sequence
constructs such as blocks allow highly repetitive operations (e.g. instrument power on), moderately flexible
operations with some changeable parameters (e.g. a DSN contact), and highly customized elaborate operations using
complex logic and event-driven execution (e.g. EDL activities.) This level of flexibility allows missions to choose
and constrain the level of complexity that best suits their needs for each purpose.

VML works via three patterns: the flight component/flight software pattern, the ground/operations pattern, and
the overall sequence design pattern. As a mission is defined, its VML needs are refined and adaptation begun. When
the VML design patterns are used, much of what a mission needs already exists in the basic adaptation and the test
suite delivered with the software. This results in lower effort, cost, and risk compared to non-standardized systems.

A. Flight software pattern
The flight component of VML is readily adaptable, based on mission needs. A number of different classes of

missions have flown with VML, so a number of stock adaptation choices are available. Commands for VML are
standardized across missions and a basic set of parameters, e.g., number of engines, size of instruction space,
number of global variables, and other parameters are selected for the early development period. As the design of the
overall mission progresses, changes to the parameters can be made based on better understanding of the mission’s
needs.

Figure 6: Tools to define mission-specific adaptations without hand-editing flight software elements

Depending on the mission, other changes may be required, either to the data-driven adaptation or to the core
code. Changes made in the past have included adding the ability for VML to build commands at time of execution
[Spitzer, Odyssey], interfacing with a spacecraft that has no file system [Dawn], addition/removal of CCSDS
headers [Dawn], and inclusion of boilerplate instrument command formats [MRO]. VML has also been used on top
of legacy systems to upgrade the capabilities of the sequencing system without disturbing the underlying heritage
sequencing flight software [Dawn]. More recently, VML 3.0 has been augmented to allow dispatch over a network
messaging system called Data Distribution System [Resource Prospector]. Once incorporated, the new capabilities
are available to subsequent missions.

The architecture of the VML Flight Component allows mission-specific changes to be readily incorporated due
to the layered nature of the code implementation and the segregation of mission-specific code and data from

American Institute of Aeronautics and Astronautics

9

mission-generic code. Support tools provide mission-specific adaptation without the need to hand-edit files. These
tools include a database for specifying commands, sequence global variables, internal sizing, number of engines, etc.
Database outputs are translated by a separate application into .c and .h files compiled into the VML binary objects
included in the flight software build. Operators and system engineering teams define the entries in the VML
Database, and then run a production process that invokes the VML Configuration Generator. Global variable
definitions require the additional invocation of the VML Compiler. The various .c and .h files compiled into the
flight software load and the OLVM load are show in Figure 6.

B. Operations pattern
The operations pattern of VML begins with adaptation. After the overall flight software pattern is defined,

operations “styles” can be selected and mission-specific adaptation begun. These styles vary widely among
missions, based on their most critical needs. Questions to be answered in this phase include:

- What types of operations activities are highly repetitive and how many of them are there? Which activities
require or benefit from an automated response? These questions scope the types and number of reusable
blocks.

- Must there always be a sequence running on the spacecraft, or are gaps allowed? If sequences must always
be running, then they must be chained together, one sequence starting the next, and fault protection must be
ready to respond in the case of a sequence abort.

- Is all of the commanding based on specific time tags, or will some commanding be event-relative? What
are the types of event-relative activities? How are the triggering events identified? Commanding all
activities relative to time tags is the most common choice. Event-relative sequencing is much more
powerful, but the non-deterministic commanding adaptation must be carefully controlled and tested.
Timing and events scope the complexity of the blocks and their test program, and the number of global
variables needed.

These and other decisions adapt VML to the mission, while incorporating the experience of other missions that have
used it.

C. Development pattern
The earlier a mission chooses to use VML, the better the integration. Proposals benefit from the choice by fully

defining the flight-ground interface as early as Step 1. With a well-understood set of configuration and sizing
parameters, significant portions of both the flight software and ground system proposal sections are readily captured.
Ground system costing using VML is well understood, whether the proposed mission is simple or highly complex.
Operations via VML are also well understood and easily scaled, which is not true of missions using unique low-
heritage flight software. VML is less expensive to implement and test than low-heritage systems, making the
proposal description and cost analysis stronger and more credible.

In Phase A, VML provides the basic infrastructure of the flight/ground interactions. The focus is on choosing
which options and features best fit the operations concept. Time is saved to work less common design questions,
since so many of the flight-ground interaction questions have been answered by the choice of VML.

In Phase B, instrument and science needs and constraints begin to be addressed, enabling an interactive
operations design. VML configuration parameters are defined based on the complexity of the mission’s sequencing
needs. In addition, rules on the mission’s use of VML are defined. This constrains both development and operations
complexity by limiting use of VML capabilities to areas where flexibility is needed for operability and risk
reduction. Each mission is recommended to perform and document this exercise in phase B to ensure that all users
are aware of project constraints. Mission-imposed constraints set in Phase B, however, can be changed throughout
development and even into operations.

In Phase C, block development begins. The VML flight component continues to adapt to any mission-unique
needs and is synchronized with the main flight software. VML is implemented in the spacecraft, the ground system,
and each of the testbeds. VML is also implemented in any flight or ground simulators used for instrument pre-
integration testing.

As integration commences in Phase D, the sequencing system is used for commanding the partially and fully
integrated flight system. All system level tests, including system, scenario, and performance testing employ VML
for commanding. While continuing block and sequence development, the ground system also conducts operations
verification and training exercises, most of which are commanded using VML. This provides true test-as-you-fly
capability and implementation.

This development pattern, refined over many missions, is highly reliable and predictable, allowing stable staff
and resource estimates, and validated schedules. This saves on implementation cost, lowers schedule and functional

American Institute of Aeronautics and Astronautics

10

risk, and provides a stable base capability on which to build. This stability in turn simplifies the implementation of
support tools such as planners and data management systems that work in concert with the sequencing system to
achieve the mission objectives.

V. Example Flight-Ground Integration using VML
The earliest missions to employ VML had a steep learning curve but greatly increased flexibility in designing

their operations. Examples of a few of their accomplishments are described below.

A. Spitzer Space Telescope
The Spitzer Space Telescope team developed many of the earliest VML operations concepts, but due to a

number of technical difficulties, Mars Odyssey launched first. Spitzer absorbed the excellent early lessons from
Mars Odyssey operations and built on them for their more highly constrained needs.

One of Spitzer’s instruments had been developed to handle most of their “sequencing” internally, passing
instruction sets through the spacecraft command system with no interaction. This led to long, unwieldy commands
and an unmanageable uplink volume. Due to Spitzer’s tight observation-to-downlink pattern (11.5 hr. to 0.5 hr.),
there was insufficient uplink time to load the instrument’s commands. Using VML blocks to build and issue the
troublesome instrument commands onboard allowed the mission to reduce uplink volume by 90%.

Figure 7 illustrates a typical master/slave arrangement similar to the one used on Spitzer. Master sequences are
generated by a planning tool with inputs from principal investigators and spacecraft operators and placed onboard on
a short cadence. The master sequences invoke slave sequences and onboard blocks during an observation period,
followed by activating downlink services at the end of the block, after which the next master sequence takes over.
Slaves are repeatable relative-timed sequences that may either be stored onboard or may be uplinked from the
ground. Blocks are repeatable code chunks stored in onboard libraries which serve as super-commands performing
tasks requiring logic.

Figure 7: Master / slave architecture with onboard blocks for commanding to reduce uplink volume

B. Phoenix entry, descent, and landing on Mars
The successful 2009 landing of Phoenix on Mars10,11 required correctly implementing a very challenging mission

phase: Entry, Descent, and Landing. Responsibility for EDL activities was divided between attitude control flight
code for high-rate monitoring and actuation, and VML blocks for everything else.

The approach taken within the VML sequences was state-driven. A series of 24 blocks, as a group, composed the
mainline set of EDL activities. The mainline blocks made use of both timed and event-driven sequencing, using

American Institute of Aeronautics and Astronautics

11

programmed delays for times prior to atmospheric entry, and taking events from flight software for activities starting
with parachute deployment and ending with touchdown. This allowed the reusable blocks to be shifted relative to
ground observations of the Martian atmosphere. It also allowed tightly timed activities to be initiated by physically
unpredictable events, such as when the spacecraft would be descending slowly enough to deploy the parachute, at
the correct speed to release the heatshield, or at a low enough altitude to release the backshell and begin powered
descent. The state-driven blocks used under VML 2.0 to accomplish EDL became the inspiration to create
executable state machines in VML 3.0.

One feature this state-driven approach enabled was a rapid reconfiguration of the EDL activities due to pre-
launch debris analysis. Originally, the cruise stage (which contained all of the direct-to-earth communications
capabilities) was to be jettisoned in preparation for entry after the spacecraft had slewed to its proper entry attitude.
At the time this seemed sensible, as the success of the slew could be quickly verified via telemetry before the X-
band transmitters were lost in the subsequent separation. However, well after the EDL sequences had been
completed and EDL testing had been undertaken, analysis showed the risk of debris impacting the spacecraft due to
the disintegration of the cruise stage to be too high. The slew-then-separate ordering would have subjected the
lander to a high risk of severe damage from fragments. Instead, separate-then-slew was needed.

Recoding of the EDL sequencing was dramatically simplified by the state-based design. The state responsible for
slewing was reordered to occur after the state responsible for the cruise stage separation. Unit tests were rerun, and
the results verified. The new product was ready for use on the spacecraft in a matter of hours rather than the weeks it
would have taken without VML, demonstrating the power of the VML state-based approach.

C. Mars Reconnaissance Orbiter
 MRO employed a science sequencing solution using multiple parallel threads of execution. In order to decouple
most of the science planning from the engineering sequencing, each instrument team was assigned a sequence thread
or “engine” of its own and a block library of its own. Provided they stayed within predetermined timeframes and
spacecraft states, they could command their instrument without coordinating with the rest of the system. This
operability tactic limited the extent of any particular instrument command error. Likewise, corrective actions such as
block updates only needed to be loaded on that instrument's engine.

D. Fault detection, response, and recovery
One of the more complicated aspects of spacecraft missions is to detect faults, undertake some appropriate

response (if necessary), and recover the spacecraft to operational status after a fault has occurred. Due to their
flexibility and ease of modification, VML blocks are frequently used to implement fault protection responses aboard
the spacecraft. Upon observing sufficiently severe faults, high-level fault protection (HLFP) flight software may
need to cause the spacecraft to enter safe mode or take some other action. In this case, the HLFP system stops all
activities in sequence engines and load its own blocks to implement needed safe mode activities such as maintaining
a power-positive attitude, initiating communications, or adjusting thermal settings. By coding fault protection
responses as VML blocks, the responses are easily updated as the mission proceeds and the aging spacecraft
develops idiosyncrasies.

Recovery may involve a large number of steps to take the spacecraft out of fault protection attitude, increase
communications rates, download recorded data, etc. Blocks that automate portions of the process eliminate light
speed delays inherent in most deep space missions and speed recovery. Once the ground determines the efficacy of
each step, the recovery process can proceed rapidly.

VI. Testing
An important operability consideration is how pre-launch testing is accomplished. JPL has a test-as-you-fly

policy, bringing operational tools into the flight system integration and test process early in Phase D. At the same
time, operations teams are constituted and training begun. Where possible, operators assist with hardware test, and
hardware developers assist with development of procedures, conduct training, and sometimes continue into
operations.

Early operator involvement and coordination during testing can lead to benefits for both operators and testers.
Operators learn the development history and get hands-on training, and hardware testers gain insight into how the
item will be used. This cross training improves adaptation, test scripting, and future design. Another way VML
missions benefit is found in testing of blocks and flight rules. When used in a hardware integration test, blocks and
flight rule checks can be verified on the hardware as well as in the ground simulation. Minor flight software changes
can be suggested at this point that could obviate the need for time-consuming workarounds in flight.

American Institute of Aeronautics and Astronautics

12

A. Mars Reconnaissance Orbiter: moving the spacecraft during ATLO
VML's ability to tap into the telemetry data of the spacecraft flight software proved to be very useful during

testing of the Mars Reconnaissance Orbiter. During ATLO, a spacecraft has to be moved between facilities - from
the high bay area to vibrational testing and back, then out to large thermal-vacuum chambers and back, and finally
into a shipping container and onto a truck for the cross-country trip to the launch facilities. This process can be very
stressful on completed work, in particular on wiring. After each move, a "touch test" is performed wherein every
switch has to be cycled on and known results such as current readings, voltage changes, or temperature increases
verified in telemetry, then cycled off with a similar check. When performed manually with ground-dispatched
commands and human-verified telemetry readings on screens, the post-move touch test for a spacecraft like MRO
could take almost a full working shift to complete, with all the associated personnel and facility costs.

In an effort to reduce the cost of performing the post-move touch test, a test conductor on the MRO mission used
VML to issue the commands and perform checking of telemetry items to verify that the switches were in working
order. By removing human interaction from the test once the blocks were loaded and execution begun, the
automated VML touch test could be completed in minutes rather than an entire shift. Accuracy was perfect as well,
as there could be no misinterpretation of screen data or missed human-dispatched commands. The test was
sufficiently quick that it was performed on a more frequent basis, sometimes under circumstances other than after a
move. In at least one instance, the automated touch test correctly identified damaged wiring, quickly allowing the
spacecraft to be repaired and activities to be resumed.

B. Mars Odyssey
As the first spacecraft to employ the capabilities made available under VML 1.0, and having launched in 2001,

Mars Odyssey has had the most experience with engineering blocks used to perform complex spacecraft activities.
This experience brought a lesson about parallel vs. in-line invocation from master sequences to blocks.

One example learned in test was whether to spawn a Deep Space Network contact block that ran during an entire
contact pass, or to run separate start contact and stop contact blocks. The former required running on a parallel,
dedicated engine, preprogramming the block with the contact times via parameters. The latter involved simply
invoking two separate blocks from the master sequence at appropriate times. Odyssey chose to implement the single
block design, which in turn required the master sequence generator to account for the contact time in the invocation
and the time for the activity following the contact, as well as allocating another engine for the parallel execution.
The complexity of the generation and the dedication of an extra engine to run during the contact was noted during
test, but remained during the mission.

Subsequent missions replaced the single contact block with separate blocks to start and end the contact. This
approach had the advantage of allowing the block to be executed as a call from the master sequence, eliminating the
need for using a dedicated engine or coordinating activities with block completions. By calling from the master for
the start, activities could be naturally interleaved within the master, followed by the end contact block as just another
activity. The start/end approach fit more consistently into the master sequence than did the parallel execution case,
and used fewer resources.

C. Automated testing faster than real-time
One of the advantages of VML is its ability to run on a workstation. In order to test blocks and sequences,

operators use Offline Virtual Machine, a program that combines the VML Flight Component with a command-line
user interface. OLVM features a harnessed clock, allowing two extremes: time can be incremented far faster than
real-time (up to 100,000 times real-time, as measured for Mars Odyssey), and time can be held still while users set
up needed condition values. The users act in lieu of a master sequence, invoking blocks interactively with desired
parameter values, changing global variable values, advancing time, and checking the results. The output can be
captured and then played back into the system to recover keystrokes and drive the test, allowing large suites of unit
tests to be built up for all operations products.

There are three advantages to this form of testing over the use of a mission Software Test Laboratory (STL)
containing flight-like processors and full simulation. First, the testing is much faster, and runs on commonly
available workstations, thereby allowing the user to iterate on the VML coding to correct errors with virtually
instantaneous turnaround time. This allows the sequences to be fully correct well before needing to test these
products in the expensive and tightly scheduled real-time environment of the STL. Second, the ability to automate
testing of the products allows changes to be rapidly and thoroughly retested, with minimal effort on the part of the
developer. Third, some master sequences cover weeks of time, making STL testing impractical or impossible,
thereby requiring a much-faster-than-real-time approach to allow the product to be tested on the ground before

American Institute of Aeronautics and Astronautics

13

installation on the spacecraft. VML provides convenient mechanisms to enable users to complete sequence testing as
quickly and efficiently as possible.

VII. Adaptation
Adaptation is the process whereby the basic VML processing setup is customized to meet the needs of a specific

mission. As the flight code evolves through the development phase, the ground tools evolve in synch. All VML
missions benefit from each other’s lessons working with the system and the tried-and-true adaptation and operations
practices developed over 15 missions. This working community allows each mission access to methods refined by
previous missions while maintaining their independent adaptation strategy.

A. Layered architecture for easy flight software adaptation
VML is built in a layered architecture to easily adapt to new missions without the need for any legacy software

changes, and only minimal additions. One prime example of this is the flight software integration of VML into the
existing flight code base performed for the Dawn mission.

The heritage sequencing capability in the flight

software for this Orbital Sciences Corporation (OSC)
mission was deemed inadequate for long-term
maneuvering with a low-thrust ion engine. The VML
Flight Component was installed to enable the mission to
perform maneuvers and related activities using blocks
developed by JPL. A small supervisory task controlled the
interaction between VML and the OSC legacy code,
incrementing the VML flight component discrete time
clock, and passing command messages in from the
software bus. Minor adaptation routines were emplaced to
allow VML access to the real-time operating system,
telemetry reporting system, and command subsystem, the
latter requiring stripping of the VML command opcodes
prior to dispatch via CCSDS messaging. Since the OSC
flight code base lacked any sort of file system, a file
buffering system was also written to allow files to be
placed in known locations for loading as though a file
system were present.

The basic arrangement for adapting VML to an existing
code base is shown in Figure 8. Note the
intercommunication between command dispatch and
commanding software, a telemetry interface, and interfaces
for real-time operating system routines, file access, and
clock reading, which constitute the majority of needed
interactions. Due to the layered architecture, VML works in the same fashion when installed into any legacy
software systems as it does for the as-flown Lockheed-Martin and Orbital Sciences missions.

B. Instant Adaptation
VML allows a set of known processes and products to be instantly specified when a mission choses it. A basic

adaptation of VML can be installed in the ground system within a few hours. Flight and ground software developers
can immediately begin working with the system, identifying interfaces and even developing sequences. By
providing a readily-available baseline system, developers can more quickly concentrate on the unique aspects of the
system that require more attention, rather than spending time and resources recreating typical capabilities.

C. Cloning
A more complex adaptation can be developed by selectively cloning a similar previous mission down to the

commands and telemetry. For instance, missions using Lockheed-Martin spacecraft buses have a highly refined
primary adaptation that evolves from mission to mission to accommodate evolution of their spacecraft product line.

Figure 8: Typical layered architecture code
adaptation between VML flight component
and legacy flight code

American Institute of Aeronautics and Astronautics

14

D. Product reuse
In the same way that cloning a similar mission’s adaptation can speed early adaptation, so can reuse of well-

tested blocks. For similar missions, blocks can be copied and then adjusted for the new mission via minor tweaks.
As the experience base with VML has grown, a collection of multi-mission blocks has grown as well. Methods for
commanding difficult activities have been noted and advice for future users documented. Because VML is multi-
mission by its nature, its users can share knowledge on missions with little or no commonality, e.g. an EDL mission
vs. Spitzer, or missions built by different spacecraft developers.

VIII. Looking Ahead: What's Next
The future of flight/ground integration is bright when using VML. VML capabilities have been enhanced in

order to get missions started quickly, improve ease of configuration, reduce the embedded memory footprint, expand
capabilities, and simplify implementation of operational systems. Mechanisms for these improvements include
human-readable ASCII commands, VML-specific standardized configuration tools, and the ability for operators to
create expert systems built from state machines.

A. ASCII commands and reduced embedded memory footprint
The traditional JPL process is to use a complex database and tool set to produce all combinations of commands

with their parameters, and track each individual command as a binary form ready for uplink. As the database is
updated, new command files with incremented revision numbers are produced, maintaining the old command
revisions for use with older flight
software builds. The result is a large
number of files, typically numbering in
the hundreds of thousands, with the
potential to radiate out-of-date
commands to the spacecraft, or to fail to
update testing scripts to use the latest
version of commands. VML ASCII
commands implement a less complex
mechanism for building and managing
spacecraft commands, providing distinct
advantages over ground-built binaries.
A comparison between ground-built
binaries and VML-translated ASCII
commands is shown in Figure 9.

Since the VML flight component is
required to dynamically build
commands onboard the spacecraft, it
contains a complete representation of all
valid commands, including names,
opcodes, data sizing, ordering,
parameter ranges, state translations, etc.
The VML 3.0 command database and
data translation tools produce the
command representation map compiled
into the VML flight component. All the
ground need do is radiate the human-
readable ASCII version of the command to the VML flight component, which will validate and translate the
command using its onboard command definitions, and pass the resulting binary on to the flight software for dispatch
and processing. Ground operations testing scripts need only call out the actual ASCII representation of the command
without worrying about revisions, since the spacecraft will always have the ability to translate the command into a
binary form compatible with itself. This eliminates the non-value-added effort of updating scripts when database
releases occur, and the risks associated with missing such an update.

Another advantage to the ASCII command approach is that only a rudimentary commanding capability is
needed, which can be as simple as using a command line capture program that forwards the resulting characters over
a Unix TCP/IP socket to the uplink flight software. Simplicity is particularly useful early in the software

Figure 9: Traditional JPL binary command flow large

combinations of parameters and revision tags in uplinkable
binary files vs. simplified VML 3.0 ASCII command flow and
onboard command building

American Institute of Aeronautics and Astronautics

15

development cycle before elaborate operations environments are available, or for low-budget technology
demonstrations intended only for the lab. The ASCII commanding also can be embedded directly in user interface
elements, including MatLab controls. Several projects in development are currently using this capability, including
Resource Prospector Mission, AutoNav development, and the NASA SBIR phase 2 I-SPAREX project13.

B. Reactive sequencing and state machine expert systems
The response of a sequence to environmental conditions that cannot be predicted via time is called reactive

sequencing. The technique was first created for the Spitzer Space Telescope in order to use the settled state of the
observatory as a precondition to imaging after a slew. The technique was also used extensively during Phoenix EDL,
which needed to wait on conditions for parachute deployment, heat shield jettison, backshell separation, and
touchdown.

VML state machines are the culmination of reactive sequencing, using variable values as preconditions to taking
transitions between states. State machines can't be considered time-ordered sequences: they are reactive logic
constructs capable of autonomous decision-making within a well-defined domain. Placing autonomy into the
sequencing domain rather than into the flight software domain makes the behavior of the resulting expert system
visible. It also simplifies changing the expert system: merely by placing new files onboard with new state machine
definitions, the system can be updated to reflect changes in the environment or the spacecraft. If needed, entirely
new autonomous capabilities can be incorporated into the spacecraft without changing any flight software.

To date, the most extensive expert systems implemented in VML state machines have been related to spacecraft
navigation controlling and sequencing JPL's AutoNav7 software. These applications include autonomous comet /
asteroid touch-and-go technical demonstrations12, lunar landing simulation, halo orbit emulation with hardware in
the loop, and autonomous rendezvous and docking for a Mars sample return mission16. Additional applications using
state machines include coordinating complex instrument inter-activities on the Resource Prospector Mission,
surveying for water on the moon and demonstrating oxygen production from regolith15.

C. Design pattern flexibility
The design pattern for autonomous onboard operations, in particular, must stay flexible. VML 3.0 provides the

fundamental capabilities for supporting many kinds of autonomous expert systems with coordinated state machines
that work together as an ensemble to run elements of the mission. Coupled with other VML capabilities such as
matrix math operations, logic constructs, insight into on-board telemetry values, and ground interaction via global
variable values, VML offers an ideal environment for adapting existing implementations to new mission needs.

IX. Conclusion
Operability has been an ongoing problem in mission development. As systems become more complex, operating

them has also become more complex. Making appropriate choices about mission capabilities can mean the
difference between an operable system and one that requires constant attention. In an era of tight budgets and
reduced operations staff, operable systems become more than important - they are critical. VML is a flexible,
customizable solution to a number of operations challenges, and allows operations work to begin at mission
inception, when operability considerations can have the greatest impact.

Acknowledgments
Some of the work described in this paper was carried out by Blue Sun Enterprises, Inc., under an agreement with

the National Aeronautics and Space Administration, and administered by the Office of Chief Technologist as a
Small Business Innovation Research grant.

Some of the work described in this paper was performed at the Jet Propulsion Laboratory (JPL), managed by the
California Institute of Technology (Caltech), under contract to the National Aeronautics and Space Administration
(NASA).

American Institute of Aeronautics and Astronautics

16

References
Reports, Theses, and Individual Papers

1Grasso, C. A., Lock, P. d., “VML Sequencing: Growing Capabilities over Multiple Missions”, AIAA Space Operations
Conference Proceedings, April 2008.

2Grasso, C. A., “The Fully Programmable Spacecraft: Procedural Sequencing for JPL Deep Space Missions Using VML

(Virtual Machine Language)”, IEEE Aerospace Applications Conference Proceedings, March 2002.

3Grasso, C. A., “Techniques for Simplifying Operations Using VML (Virtual Machine Language) Sequencing on Mars

Odyssey and SIRTF”, IEEE Aerospace Applications Conference Proceedings, March 2003.

4Peer, S. and Grasso, C. A., “Spitzer Space Telescope Use of Virtual Machine Language”, IEEE Aerospace Conference

Proceedings, December 2004.

5Grasso, C. A., “Virtual Machine Language (VML)”, NPO 40365, JPL Commercial Programs Office, Innovative Technology

Asset Management Group, Docket Date: 12-May-2003.

6Grasso, C. A., “Virtual Machine Language (VML) NASA Board Award”, NASA Inventions and Contributions Board,

NASA Technical Report 40365, Award Date: September 7, 2006.

7Riedel, J. A., et al., “AutoNav Mark 3: Engineering the Next Generation of Autonomous Onboard Navigation and

Guidance”, AIAA Guidance, Navigation, and Control Conference, August 2006.

8Chapel, J. et al., “Aerobraking Safing Approach for 2001 Mars Odyssey”, American Astronautics Society Guidance and

Control Conference, Feb 2002.

9Grasso, C. A., Riedel, J. E., “VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling”,

AIAA Space Operations Conference Proceedings, May 2012.

10Grover, M., Cichy, D., Dasai, P.N., “Overview of the Phoenix Entry, Descent and Landing System Architecture,” AIAA

Paper AIAA 2006-7218, AIAA/AAS Astrodynamics Specialist Conference, Honolulu, HI, 18-21 August 2008.

11Garcia, M., Fujii, K., “Mission Design Overview for the Phoenix Mars Scout Mission,” AAS Paper 07-247, AIAA/AAS

Space Flight Mechanics Meeting, Sedona, AZ, 28 January -01 February 2007.

12Grasso, C. A., Riedel, J. E., Vaughn, A.T., “Reactive Sequencing for Autonomous Navigation Evolving from Phoenix

Entry, Descent, and Landing”, AIAA Space Operations Conference Proceedings, April 2010.

13“Balancing Autonomous Spacecraft Activity Control with an Integrated Scheduler- Planner And Reactive Executive (I-

SPAREX)”, Red Canyon Software, SBIR Proposal #: H6.01-8798, NASA contract NNX13CA26P.

14Grasso, C. A., “Formal Methods for Design, Development, and Runtime: Runtime Verification of Distributed Reactive

Systems Using DR-VIA and RTV with extended TTM/RTTL Notation.” Doctoral Thesis, University of Colorado, 1996.

15Office of the Chief Technologist, National Aeronautics and Space Administration, “Virtual Machine Language Controls

Remote Devices.” Spinoff 2013, http://spinoff.nasa.gov/Spinoff2013/pdf/Spinoff2013.pdf.

16Grasso, C. A., “VML 3.0 Reactive Rendezvous and Docking Sequencer for Mars Sample Return”, AIAA Space Operations

Conference Proceedings, May 2014.

Related web sites

Blue Sun Enterprises VML Website http://www.bluesunenterprises.com

