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Flight and ground integration is an ongoing challenge in the development of deep space 
mission operations systems. Separate development teams and schedules exacerbate the 
problem. Enhancing the operability of the flight and ground interactions has proven to be a 
strategy that reduces both cost and risk. One of the first areas of operability addressed has 
been the commanding and sequencing system. Virtual Machine Language (VML) 
sequencing was developed to improve operability and has now been used on fifteen NASA 
deep-space missions, most recently on NASA’s Mars Atmosphere and Volatile EvolutioN 
(MAVEN) mission. Onboard adaptation to new missions has taken the form of data-driven 
configuration of the VML software for command and variable definitions without changes to 
underlying flight code, dramatically reducing cost and risk. Continuity in capability has 
allowed new VML mission sequencing to be based on products from prior missions, which 
are then modified as necessary to accommodate different hardware capabilities. In 
conjunction with the NASA SBIR "Reactive Rendezvous and Docking Sequencer", 
improvements incorporated into the various versions of VML since 1998 allow VML scripts 
to perform much of the work that formerly would have required expensive flight software 
development. The latest version, VML 3.0, has been enhanced to include reactive state 
machines for autonomous management of critical spacecraft operations, object-oriented 
element organization, and matrix/vector operations.  

I. Mission Operations Domain 
The mission operations domain of a deep space mission encompasses both the development of the system used 

to carry out operations, and the conduct of the operations phase of the mission itself. A Mission Operations System 
(MOS) is comprised of a Ground Data System (GDS), which includes the software, hardware, networks, facilities of 
the domain, plus the MOS teams, policies, processes, procedures, and training. Figure 1 shows the basic operations 
functions carried out for a deep space mission.  

It is essential to view deep space mission operations as a function of the mission objectives. Seen in this way, 
operations can be thought of as consisting of three items, in priority order: 

 1. Collect science data (to achieve the mission objectives) 
 2. Operate the flight system (to collect science) 
 3. Build, test, and deliver the flight system to orbit (in order to have a platform to operate) 
In order to achieve the highest priority, operations personnel must successfully operate the flight system to 

collect science data. The more operable the flight system, the simpler and more reliable the operations team’s job 
becomes. During development, however, it is easy to lose sight of mission objectives in the drive to build and launch 
the flight system. What may be lost is a focus on the achievement of the mission objectives that can only be 
accomplished via operation of that system. Operable flight systems are more likely to reach the objectives, and keep 
cost and risk down as well. 
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II. The Problem: Low Operability 
A common practice during the development of a mission’s architecture is to shape the Flight and Mission 

Operations Systems as if they are separate, stand-alone systems. This practice omits operability – purposeful design 
of the flight system to enable operations to be as uncomplicated and trouble-free as possible. Rooted in the long-held 
belief that ground and flight systems have little interaction beyond the uplink and downlink external interfaces, the 
flight system and ground system development processes are often largely decoupled. Though this may have been 
sufficient with simpler spacecraft, the advent of complex flight and ground software suites has made this approach 
inefficient, expensive, and high risk. 

A. Operability’s effects 
In the design of modern flight systems, operability considerations are uneven. Conversations with Mars 

Reconnaissance Orbiter (MRO) development engineers have brought to light examples of both strong and weak 
operability design in the mission. 

One design choice led to two instruments sharing a single interface to the command and data handling system. 
When one instrument of the two caused a data overflow problem, both instruments had to stop taking data while the 
anomaly was investigated.   

Another example involves the MRO onboard data system. Its mass memory had been designed to be extremely 
large, compared to earlier Mars missions, in order to support the volume of data MRO was expected to generate. 
Normally, this would be an excellent operability choice, providing flexibility in implementing data return strategies.  
However, the flight computer processor was not fast enough to easily manage the large number of data items that the 
data volume contained. Onboard data store management created significant unplanned workload for the operations 
team.  

In contrast, the MRO power system is an example of an excellent design that was focused on operability. Early 
in the design phase, MRO designers made power system operability a high priority and assigned trades to 

 
 
Figure 1. A simplified view of mission operations functions, showing the flow of data through the system 
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investigate its design space. As a result, the power system was built with sufficient margin to obviate the need for 
daily or weekly power management, relieving the operations team of that common task.  

The deficiencies of a poorly integrated flight and ground system typically become apparent in the integration and 
test phase when uplink, downlink, and system end-to-end tests are conducted. A test-as-you-fly philosophy also 
serves to uncover flight-like problems during system integration. Examples of typical disconnects include sequence 
size overruns, memory/storage allocation problems, bus errors and command timing constraints, and out-of-
tolerance flight system behaviors. Flight system idiosyncrasies also surface in this period, adding to changes during 
the run-up up to launch. 

At this point in development, the flight system is limited to critical changes, driving the standard decision to 
move workarounds into operations. Once responsibility has been transferred to the operations team after launch, the 
compromised flight system design continues to introduce cost and risk. As shown in Figure 2, system deficiencies 
frequently require unanticipated (and unbudgeted) development cost, extra personnel time, and the need to 
undertake unnecessarily complex activities on a recurring basis.  

B. Operations crossover 
The solution to these problems is to 

consciously design flight and ground 
systems together. In that way, 
reasonable trades can be made to decide 
the most effective implementation of 
operability features, and to budget 
accordingly. In some cases, allocating 
certain operability challenges to the 
operations phase may be more effective, 
provided there is time to automate 
solutions. In other cases, operations 
considerations in early flight system 
design can lead to operable systems 
with no additional cost. It is a matter of 
considering all of the impacts in design 
trades, rather than only the traditional 
spacecraft-centric impacts. With 
complete trades, the results can be 
analyzed and implemented by the mission team as a whole. 

One of the simplest ways to improve operability is to shift some functions, normally done repetitively on the 
ground, to the flight system. When done effectively, this can increase system flexibility and robustness. One such 
approach is via the Virtual Machine Language (VML)1-9, 15, 16 sequencing system.  

III. Virtual Machine Language for Operations 
VML is a processing language tuned to the needs of spacecraft operations. Before VML, operators had little 

influence over the way their spacecraft responded to commands, and a very limited set of commanding and 
sequencing capabilities. Anomalous or idiosyncratic spacecraft behavior was dealt with via onerous and sometimes 
risky workarounds, or by costly flight software changes. 

VML provides functionality to allow operators to implement onboard reusable solutions that in the past could 
only have been implemented in flight software. VML avoids many of the problems associated with typical flight 
software source code developed in C, C++, or Ada, while providing flexibility to implement straightforward 
operations. By placing operations onboard rather than using ground-based commanding scripts, VML constructs can 
also make decisions locally, reacting to environmental conditions seen by a spacecraft minutes or hours away from 
earth in round-trip light speed delay. By using VML for these onboard capabilities rather than flight software, late 
changes and idiosyncrasies can be accommodated at minimal cost and risk. 

VML provides several methods for commanding and sequencing missions, including sequences, blocks, objects, 
and state machines. VML does not run on the "bare iron" of the host microprocessor. Instead, the language is 
implemented as a byte code binary, and is interpreted at runtime by onboard software known as the VML Flight 
Component. This approach provides a safe sandbox for execution, eliminating many common problems found in 
flight software implementations. VML provides operations structure for issuing spacecraft commands, while 

 
Figure 2. Effects development problems have on operations after 
development transitions to operations 



 
American Institute of Aeronautics and Astronautics 

 

4 

protecting the user against problems encountered with low level languages like C, including accidental assignment, 
off-the-end array access, division by zero, type coercion, and missing functions. Ultimately, VML constructs issue 
the spacecraft commands required to complete tasks using logic based on time and the conditions present. VML 
operates the flight system within the intended constraints and tested capabilities of the flight software, just as the 
ground system does. It provides a growing set of features based on mission requests and has been used on fifteen 
missions, with more in development. 

A. Spacecraft commanding 
Commands are directives to the spacecraft, typically represented in a human-readable form and translated to a 

binary format. Commands cause the spacecraft to behave in some desirable way for the purposes of science 
collection, power management, thermal stabilization, propulsive maneuvers, pyrotechnic firing, and so forth. 
Commands may originate from ground-based human operators, flight software elements, or sequences. 

Sequencing is the issuance of spacecraft commands from an on-board store that allows the spacecraft to perform 
in an automated fashion when no uplink is available, or when light speed delays preclude direct commanding from 
the ground. Commands in VML may be timed according to absolute (wall-clock) time and relative time, as well as 
in response to conditions on board the spacecraft using a technique known as event-driven sequencing. 

B. Heritage 
Virtual Machine Language development began in 1997. Five versions have been implemented. VML has been 

used or is in use on 15 NASA flight missions to date, including Stardust2, Genesis, Mars Odyssey, Spitzer Space 
Telescope3, 4, 8, MRO, Dawn, Phoenix, Juno, GRAIL, MAVEN, OSIRIS-REx, InSight, and the Resource Prospector 
Mission RESOLVE instrument package. A timeline of VML use appears in Figure 3.  

 

C. Feature list evolution 
The VML flight environment provides multiple threads of execution within one operating system task using a 

data-driven construct known as a sequencing engine. VML allows an extensive set of variable types, including 

 

 
Figure 3. VML heritage timeline, 1997 - 2018, showing NASA deep-space missions and their VML versions 
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integers, floats, Boolean values, strings, and arrays. Arithmetic and trigonometric calculations, logical 
manipulations, and matrix operations are available for use. Conditionals may be used to make decisions based on 
local values at runtime. WHILE and FOR loops perform iteration. Sequences exist as named functions, which can 
accept parameters and have local variables. Functions may be packaged together into a single file loaded onto an 
engine in order to associate runtime behavior or to provide libraries of commonly needed services. Objects with 
methods package code and data together. Specialized objects called state machines provide a directly executable set 

of reactive actions, and can intrinsically coordinate to perform sophisticated autonomy as an expert system. Table 1 
shows the evolution of VML features over time. 

D. Simple tool chain  
The VML tool suite consists of an embedded VML Flight Component (VMLFC), a ground-based VML 

Compiler, the Offline Virtual Machine (OLVM) program, and the VML Command Translator. This suite allows 
products to be generated, loaded, executed, and tested. The relationships among these VML tools are shown in 
Figure 4. A source file containing human-readable VML script is generated using a standard text editor or other tool. 
The compiler translates the text file into a loadable binary file, translating commands and times using mission-
specific tools and tracking valid global variables and symbolic constants for the mission. The file produced can then 
be loaded by the VMLFC.  

Typical development processes run the module under OLVM in order to test and validate the behavior of the 
code. User-defined tests can be generated with very little effort by capturing a user-guided session and then 
rerunning the test using the extracted user keystrokes from the session. OLVM can be widely deployed on Linux, 
Macintosh, and Sun platforms, allowing products to be fully tested before validating them on flight-like hardware in 
the less-accessible real-time Software Test Laboratory. 

Mission adaptation of the onboard flight component requires the definition of spacecraft commands and 
sequencing global variables. This task is performed by systems engineering using the VML Database, then 
translating those database elements to various definition files compiled into the flight software and elsewhere using 
the VML Configuration Generator. Products created by this process are then incorporated into the VML Flight 

Table 1: VML Feature List Evolution 

 pre-
VML 

VML 
0 

VML 
1.0 

VML 
1.1 

VML 
2.0 

VML 
3.0 

Processor Custom PPC, 
Sparc 

PPC, 
Sparc 

PPC, 
Sparc 

PPC, 
Sparc 

PPC, 
Sparc, 
Intel 

Sequences X X X X X X 
Integer data X X X X X X 
Reusable blocks X X X X X X 
Arithmetic, bit, comparison operators  X X X X X 
Block libraries   X X X X 
Floats, unsigned integers, booleans, strings   X X X X 
If / Else If / Else conditional   X X X X 
While loop   X X X X 
Wait on single global variable   X X X X 
Onboard command generation   X X X X 
String table (uplink size reduction)    X X X 
For loop     X X 
Engine sizing     X X 
Trigonometric functions     X X 
Optional time tags      X 
Command completion      X 
Object-oriented command / function syntax      X 
Human-readable ground commanding      X 
Matrix and vector operations      X 
Heterogeneous arrays      X 
Wait on complex conditions      X 
Select loop for triggering rules      X 
State machines      X 
Synchronized state transitions      X 
Unix-hosted definition tools, web database      X 

 



 
American Institute of Aeronautics and Astronautics 

 

6 

Components in the same manner across all platforms, including OLVM, the Software Testing lab flight software 
load, and the spacecraft flight software load. 

 

 
 

Figure 4: VML tool chain. Human-readable VML translated by compiler into format usable by workstation 
OLVM and a flight computer, either in a test lab or on the spacecraft. 

E. Reusable blocks and master sequences 
One of the most commonly used features in VML is the reusable block. Blocks are named functions that allow 

input parameters, and permit only relative timing of statements. This relative timing allows blocks to be reused 
without changing time tags within the element. Missions can then write blocks for a wide variety of repeated 
activities on the spacecraft, including reaction wheel desaturation, uplink and downlink initiation and termination, 
instrument control, aerobraking8, trajectory burns, pointing, battery management, etc. 

Once a block has been developed and tested, it can be used as an abstract capability.  Blocks are built and tested 
according to requirements and flight rules via a user-friendly process similar to (but much simpler than) a flight 
software development process. Once tested, there is no need to scrutinize and review a block’s contents on every 
invocation. In a sense, blocks act like super-commands for the spacecraft, providing more functionality and 
flexibility than simple spacecraft commands. 

Blocks are frequently grouped together and stored on an engine as a library. Engineering and science libraries 
deal with spacecraft housekeeping and instrument control, respectively. Dividing blocks into two separate libraries 
allows the spacecraft operations and science teams easier control over their respective products. Since the libraries 
are always present in an engine, the blocks are immediately available to be started via ground command, or to be 
called from other blocks and sequences. 

A master sequence is a single-use sequence containing absolute time tags that is built to execute during a known 
time period. The sequence team typically collects requests from the engineering and science teams to schedule 
specific activities aboard the spacecraft, and generates a master sequence to implement an integrated schedule. 
Master sequences typically span anywhere from twelve hours (as on Spitzer) to two weeks (as on Mars missions 
featuring VML). 

Most of the activities within a master sequence involve invoking blocks rather than issuing spacecraft 
commands. This simplifies generation of the master sequence, dramatically reduces the time needed to review the 
activities, minimizes the size of the file that contains the master, and reduces the probability of violating flight rules 
or other requirements. 
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Master sequences may be chained together, wherein the last statement of the current master loads the next 
known master by file name. By following a standardized naming convention, the current master sequence is able to 
start its successor so long as the successor is loaded onboard sometime before the end of the current master 
sequence. In the case of short-duration master sequences, multiple masters may be stored onboard each day. For 
longer duration master sequences, new masters may be placed onboard as infrequently as once a month. The 
approach taken is spelled out in the documents defining the Mission Operations System. 

F. Objects and state machines 
VML 3.0 employs new ways of organizing logic and data over its predecessor versions. First among these is the 

object. An object combines data and functions into a cohesive package. In doing so, data are represented as 
attributes within the object, which is persistent and shared among the functions (called methods) of the object, but 
hidden from direct manipulation by other objects or blocks. An object acts like a subset of a block library, but 
contains functionality relevant to a more specific domain, rather than having all functionality needed by the entire 
spacecraft. As such, an object may be developed by instrument or subsystem personnel, and may be easily updated 
without affecting other objects in the system. 

Objects allow operations developers to abstract capabilities into VML code intended to deal with just one 
subsystem: uplink, downlink, thermal control, attitude control, etc., become candidate objects to be coded. When 
operations for a new mission are undertaken, a previous mission's objects may be cloned then modified to reflect the 
particulars of the new mission. Objects provide a useful abstraction, allowing detailed changes to be isolated within 
individual methods, while maintaining method names that match the preceding mission. In this way, a pre-built 
structure for operations is applied from one VML mission to the next. Objects enhance operability by providing a 
convenient abstraction mechanism that can be applied from mission to mission. 

A specialized object called a state machine has been added to VML 3.0. A state machine is a highly organized 
way of constraining activities within the 
sequencing domain to behave as a series of 
named states transitioning to other states 
based on conditions. This causes the system 
to behave according to tightly defined 
specifications, and avoids accidental 
violation of requirements. Using coordinated 
state machines allows complex problems to 
be broken down into simple, testable 
elements that feature simple operational 
transparency, and allow the system to be 
easily changed and extended. 

VML state machines have a graphical 
representation very similar to that of Unified 
Modeling Language (UML) used in software 
engineering, but include the ability to 
synchronize transition-taking behavior 
among separate state machines. This 
synchronization ability allows a set of state 
machines to coordinate their actions by 
design, and act together as an expert system 
to accomplish a goal. 

VML state machines have been used to 
demonstrate comet and asteroid touch-and-
go missions, lunar landing missions, Mars 
sample return automated rendezvous and 
docking, coordination of instrument 
activities on the RESOLVE instrument 
package for lunar regolith characterization 
and oxygen production, and a variety of 
onboard autonomy applications. An example state machine for performing a hypothetical Mars Sample Return 
mission appears in Figure 5.  

 
Figure 5: State machine acting as flight director for 
controlling a hypothetical Mars Sample Return mission 
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IV. How VML Addresses Spacecraft Operability  
In order for VML to enhance operability, it was designed to be complete, yet adaptable. VML provides a 

common feature set on which to overlay needed operations functions.  One of the hallmarks of an operable system is 
flexibility. VML allows a wide range of flexibility in the commanding and sequencing of a mission. Sequence 
constructs such as blocks allow highly repetitive operations (e.g. instrument power on), moderately flexible 
operations with some changeable parameters (e.g. a DSN contact), and highly customized elaborate operations using 
complex logic and event-driven execution (e.g. EDL activities.) This level of flexibility allows missions to choose 
and constrain the level of complexity that best suits their needs for each purpose.  

VML works via three patterns: the flight component/flight software pattern, the ground/operations pattern, and 
the overall sequence design pattern. As a mission is defined, its VML needs are refined and adaptation begun. When 
the VML design patterns are used, much of what a mission needs already exists in the basic adaptation and the test 
suite delivered with the software. This results in lower effort, cost, and risk compared to non-standardized systems.  

A. Flight software pattern 
The flight component of VML is readily adaptable, based on mission needs. A number of different classes of 

missions have flown with VML, so a number of stock adaptation choices are available. Commands for VML are 
standardized across missions and a basic set of parameters, e.g., number of engines, size of instruction space, 
number of global variables, and other parameters are selected for the early development period. As the design of the 
overall mission progresses, changes to the parameters can be made based on better understanding of the mission’s 
needs.  

 

 
Figure 6: Tools to define mission-specific adaptations without hand-editing flight software elements 

Depending on the mission, other changes may be required, either to the data-driven adaptation or to the core 
code. Changes made in the past have included adding the ability for VML to build commands at time of execution  
[Spitzer, Odyssey], interfacing with a spacecraft that has no file system [Dawn], addition/removal of CCSDS 
headers [Dawn], and inclusion of boilerplate instrument command formats [MRO]. VML has also been used on top 
of legacy systems to upgrade the capabilities of the sequencing system without disturbing the underlying heritage 
sequencing flight software [Dawn]. More recently, VML 3.0 has been augmented to allow dispatch over a network 
messaging system called Data Distribution System [Resource Prospector]. Once incorporated, the new capabilities 
are available to subsequent missions. 

The architecture of the VML Flight Component allows mission-specific changes to be readily incorporated due 
to the layered nature of the code implementation and the segregation of mission-specific code and data from 
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mission-generic code. Support tools provide mission-specific adaptation without the need to hand-edit files. These 
tools include a database for specifying commands, sequence global variables, internal sizing, number of engines, etc. 
Database outputs are translated by a separate application into .c and .h files compiled into the VML binary objects 
included in the flight software build. Operators and system engineering teams define the entries in the VML 
Database, and then run a production process that invokes the VML Configuration Generator. Global variable 
definitions require the additional invocation of the VML Compiler. The various .c and .h files compiled into the 
flight software load and the OLVM load are show in Figure 6. 

B. Operations pattern 
The operations pattern of VML begins with adaptation. After the overall flight software pattern is defined, 

operations “styles” can be selected and mission-specific adaptation begun. These styles vary widely among 
missions, based on their most critical needs. Questions to be answered in this phase include: 

- What types of operations activities are highly repetitive and how many of them are there? Which activities 
require or benefit from an automated response? These questions scope the types and number of reusable 
blocks.   

- Must there always be a sequence running on the spacecraft, or are gaps allowed? If sequences must always 
be running, then they must be chained together, one sequence starting the next, and fault protection must be 
ready to respond in the case of a sequence abort.  

- Is all of the commanding based on specific time tags, or will some commanding be event-relative? What 
are the types of event-relative activities? How are the triggering events identified? Commanding all 
activities relative to time tags is the most common choice. Event-relative sequencing is much more 
powerful, but the non-deterministic commanding adaptation must be carefully controlled and tested. 
Timing and events scope the complexity of the blocks and their test program, and the number of global 
variables needed.  

These and other decisions adapt VML to the mission, while incorporating the experience of other missions that have 
used it. 

C. Development pattern 
The earlier a mission chooses to use VML, the better the integration. Proposals benefit from the choice by fully 

defining the flight-ground interface as early as Step 1. With a well-understood set of configuration and sizing 
parameters, significant portions of both the flight software and ground system proposal sections are readily captured. 
Ground system costing using VML is well understood, whether the proposed mission is simple or highly complex. 
Operations via VML are also well understood and easily scaled, which is not true of missions using unique low-
heritage flight software. VML is less expensive to implement and test than low-heritage systems, making the 
proposal description and cost analysis stronger and more credible. 

In Phase A, VML provides the basic infrastructure of the flight/ground interactions. The focus is on choosing 
which options and features best fit the operations concept. Time is saved to work less common design questions, 
since so many of the flight-ground interaction questions have been answered by the choice of VML.  

In Phase B, instrument and science needs and constraints begin to be addressed, enabling an interactive 
operations design. VML configuration parameters are defined based on the complexity of the mission’s sequencing 
needs. In addition, rules on the mission’s use of VML are defined. This constrains both development and operations 
complexity by limiting use of VML capabilities to areas where flexibility is needed for operability and risk 
reduction. Each mission is recommended to perform and document this exercise in phase B to ensure that all users 
are aware of project constraints. Mission-imposed constraints set in Phase B, however, can be changed throughout 
development and even into operations. 

In Phase C, block development begins. The VML flight component continues to adapt to any mission-unique 
needs and is synchronized with the main flight software. VML is implemented in the spacecraft, the ground system, 
and each of the testbeds. VML is also implemented in any flight or ground simulators used for instrument pre-
integration testing. 

As integration commences in Phase D, the sequencing system is used for commanding the partially and fully 
integrated flight system. All system level tests, including system, scenario, and performance testing employ VML 
for commanding. While continuing block and sequence development, the ground system also conducts operations 
verification and training exercises, most of which are commanded using VML. This provides true test-as-you-fly 
capability and implementation. 

This development pattern, refined over many missions, is highly reliable and predictable, allowing stable staff 
and resource estimates, and validated schedules.  This saves on implementation cost, lowers schedule and functional 
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risk, and provides a stable base capability on which to build. This stability in turn simplifies the implementation of 
support tools such as planners and data management systems that work in concert with the sequencing system to 
achieve the mission objectives. 

V. Example Flight-Ground Integration using VML 
The earliest missions to employ VML had a steep learning curve but greatly increased flexibility in designing 

their operations. Examples of a few of their accomplishments are described below. 

A. Spitzer Space Telescope 
The Spitzer Space Telescope team developed many of the earliest VML operations concepts, but due to a 

number of technical difficulties, Mars Odyssey launched first. Spitzer absorbed the excellent early lessons from 
Mars Odyssey operations and built on them for their more highly constrained needs.   

One of Spitzer’s instruments had been developed to handle most of their “sequencing” internally, passing 
instruction sets through the spacecraft command system with no interaction. This led to long, unwieldy commands 
and an unmanageable uplink volume. Due to Spitzer’s tight observation-to-downlink pattern (11.5 hr. to 0.5 hr.), 
there was insufficient uplink time to load the instrument’s commands. Using VML blocks to build and issue the 
troublesome instrument commands onboard allowed the mission to reduce uplink volume by 90%. 

Figure 7 illustrates a typical master/slave arrangement similar to the one used on Spitzer. Master sequences are 
generated by a planning tool with inputs from principal investigators and spacecraft operators and placed onboard on 
a short cadence. The master sequences invoke slave sequences and onboard blocks during an observation period, 
followed by activating downlink services at the end of the block, after which the next master sequence takes over. 
Slaves are repeatable relative-timed sequences that may either be stored onboard or may be uplinked from the 
ground. Blocks are repeatable code chunks stored in onboard libraries which serve as super-commands performing 
tasks requiring logic. 

 

 
Figure 7: Master / slave architecture with onboard blocks for commanding to reduce uplink volume 

B. Phoenix entry, descent, and landing on Mars 
The successful 2009 landing of Phoenix on Mars10,11 required correctly implementing a very challenging mission 

phase: Entry, Descent, and Landing. Responsibility for EDL activities was divided between attitude control flight 
code for high-rate monitoring and actuation, and VML blocks for everything else. 

The approach taken within the VML sequences was state-driven. A series of 24 blocks, as a group, composed the 
mainline set of EDL activities. The mainline blocks made use of both timed and event-driven sequencing, using 
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programmed delays for times prior to atmospheric entry, and taking events from flight software for activities starting 
with parachute deployment and ending with touchdown. This allowed the reusable blocks to be shifted relative to 
ground observations of the Martian atmosphere. It also allowed tightly timed activities to be initiated by physically 
unpredictable events, such as when the spacecraft would be descending slowly enough to deploy the parachute, at 
the correct speed to release the heatshield, or at a low enough altitude to release the backshell and begin powered 
descent. The state-driven blocks used under VML 2.0 to accomplish EDL became the inspiration to create 
executable state machines in VML 3.0. 

One feature this state-driven approach enabled was a rapid reconfiguration of the EDL activities due to pre-
launch debris analysis. Originally, the cruise stage (which contained all of the direct-to-earth communications 
capabilities) was to be jettisoned in preparation for entry after the spacecraft had slewed to its proper entry attitude. 
At the time this seemed sensible, as the success of the slew could be quickly verified via telemetry before the X-
band transmitters were lost in the subsequent separation. However, well after the EDL sequences had been 
completed and EDL testing had been undertaken, analysis showed the risk of debris impacting the spacecraft due to 
the disintegration of the cruise stage to be too high. The slew-then-separate ordering would have subjected the 
lander to a high risk of severe damage from fragments. Instead, separate-then-slew was needed. 

Recoding of the EDL sequencing was dramatically simplified by the state-based design. The state responsible for 
slewing was reordered to occur after the state responsible for the cruise stage separation. Unit tests were rerun, and 
the results verified. The new product was ready for use on the spacecraft in a matter of hours rather than the weeks it 
would have taken without VML, demonstrating the power of the VML state-based approach. 

C. Mars Reconnaissance Orbiter 
 MRO employed a science sequencing solution using multiple parallel threads of execution. In order to decouple 
most of the science planning from the engineering sequencing, each instrument team was assigned a sequence thread 
or “engine” of its own and a block library of its own. Provided they stayed within predetermined timeframes and 
spacecraft states, they could command their instrument without coordinating with the rest of the system. This 
operability tactic limited the extent of any particular instrument command error. Likewise, corrective actions such as 
block updates only needed to be loaded on that instrument's engine. 

D. Fault detection, response, and recovery 
One of the more complicated aspects of spacecraft missions is to detect faults, undertake some appropriate 

response (if necessary), and recover the spacecraft to operational status after a fault has occurred. Due to their 
flexibility and ease of modification, VML blocks are frequently used to implement fault protection responses aboard 
the spacecraft. Upon observing sufficiently severe faults, high-level fault protection (HLFP) flight software may 
need to cause the spacecraft to enter safe mode or take some other action. In this case, the HLFP system stops all 
activities in sequence engines and load its own blocks to implement needed safe mode activities such as maintaining 
a power-positive attitude, initiating communications, or adjusting thermal settings. By coding fault protection 
responses as VML blocks, the responses are easily updated as the mission proceeds and the aging spacecraft 
develops idiosyncrasies.  

Recovery may involve a large number of steps to take the spacecraft out of fault protection attitude, increase 
communications rates, download recorded data, etc. Blocks that automate portions of the process eliminate light 
speed delays inherent in most deep space missions and speed recovery. Once the ground determines the efficacy of 
each step, the recovery process can proceed rapidly. 

VI. Testing 
An important operability consideration is how pre-launch testing is accomplished. JPL has a test-as-you-fly 

policy, bringing operational tools into the flight system integration and test process early in Phase D. At the same 
time, operations teams are constituted and training begun. Where possible, operators assist with hardware test, and 
hardware developers assist with development of procedures, conduct training, and sometimes continue into 
operations.  

Early operator involvement and coordination during testing can lead to benefits for both operators and testers. 
Operators learn the development history and get hands-on training, and hardware testers gain insight into how the 
item will be used. This cross training improves adaptation, test scripting, and future design. Another way VML 
missions benefit is found in testing of blocks and flight rules. When used in a hardware integration test, blocks and 
flight rule checks can be verified on the hardware as well as in the ground simulation. Minor flight software changes 
can be suggested at this point that could obviate the need for time-consuming workarounds in flight.  
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A. Mars Reconnaissance Orbiter: moving the spacecraft during ATLO 
VML's ability to tap into the telemetry data of the spacecraft flight software proved to be very useful during 

testing of the Mars Reconnaissance Orbiter. During ATLO, a spacecraft has to be moved between facilities - from 
the high bay area to vibrational testing and back, then out to large thermal-vacuum chambers and back, and finally 
into a shipping container and onto a truck for the cross-country trip to the launch facilities. This process can be very 
stressful on completed work, in particular on wiring. After each move, a "touch test" is performed wherein every 
switch has to be cycled on and known results such as current readings, voltage changes, or temperature increases 
verified in telemetry, then cycled off with a similar check. When performed manually with ground-dispatched 
commands and human-verified telemetry readings on screens, the post-move touch test for a spacecraft like MRO 
could take almost a full working shift to complete, with all the associated personnel and facility costs. 

In an effort to reduce the cost of performing the post-move touch test, a test conductor on the MRO mission used 
VML to issue the commands and perform checking of telemetry items to verify that the switches were in working 
order. By removing human interaction from the test once the blocks were loaded and execution begun, the 
automated VML touch test could be completed in minutes rather than an entire shift. Accuracy was perfect as well, 
as there could be no misinterpretation of screen data or missed human-dispatched commands. The test was 
sufficiently quick that it was performed on a more frequent basis, sometimes under circumstances other than after a 
move. In at least one instance, the automated touch test correctly identified damaged wiring, quickly allowing the 
spacecraft to be repaired and activities to be resumed. 

B. Mars Odyssey 
As the first spacecraft to employ the capabilities made available under VML 1.0, and having launched in 2001, 

Mars Odyssey has had the most experience with engineering blocks used to perform complex spacecraft activities. 
This experience brought a lesson about parallel vs. in-line invocation from master sequences to blocks. 

One example learned in test was whether to spawn a Deep Space Network contact block that ran during an entire 
contact pass, or to run separate start contact and stop contact blocks. The former required running on a parallel, 
dedicated engine, preprogramming the block with the contact times via parameters. The latter involved simply 
invoking two separate blocks from the master sequence at appropriate times. Odyssey chose to implement the single 
block design, which in turn required the master sequence generator to account for the contact time in the invocation 
and the time for the activity following the contact, as well as allocating another engine for the parallel execution. 
The complexity of the generation and the dedication of an extra engine to run during the contact was noted during 
test, but remained during the mission. 

Subsequent missions replaced the single contact block with separate blocks to start and end the contact. This 
approach had the advantage of allowing the block to be executed as a call from the master sequence, eliminating the 
need for using a dedicated engine or coordinating activities with block completions. By calling from the master for 
the start, activities could be naturally interleaved within the master, followed by the end contact block as just another 
activity. The start/end approach fit more consistently into the master sequence than did the parallel execution case, 
and used fewer resources. 

C. Automated testing faster than real-time 
One of the advantages of VML is its ability to run on a workstation. In order to test blocks and sequences, 

operators use Offline Virtual Machine, a program that combines the VML Flight Component with a command-line 
user interface. OLVM features a harnessed clock, allowing two extremes: time can be incremented far faster than 
real-time (up to 100,000 times real-time, as measured for Mars Odyssey), and time can be held still while users set 
up needed condition values. The users act in lieu of a master sequence, invoking blocks interactively with desired 
parameter values, changing global variable values, advancing time, and checking the results. The output can be 
captured and then played back into the system to recover keystrokes and drive the test, allowing large suites of unit 
tests to be built up for all operations products. 

There are three advantages to this form of testing over the use of a mission Software Test Laboratory (STL) 
containing flight-like processors and full simulation. First, the testing is much faster, and runs on commonly 
available workstations, thereby allowing the user to iterate on the VML coding to correct errors with virtually 
instantaneous turnaround time. This allows the sequences to be fully correct well before needing to test these 
products in the expensive and tightly scheduled real-time environment of the STL. Second, the ability to automate 
testing of the products allows changes to be rapidly and thoroughly retested, with minimal effort on the part of the 
developer. Third, some master sequences cover weeks of time, making STL testing impractical or impossible, 
thereby requiring a much-faster-than-real-time approach to allow the product to be tested on the ground before 
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installation on the spacecraft. VML provides convenient mechanisms to enable users to complete sequence testing as 
quickly and efficiently as possible. 

VII. Adaptation 
Adaptation is the process whereby the basic VML processing setup is customized to meet the needs of a specific 

mission. As the flight code evolves through the development phase, the ground tools evolve in synch. All VML 
missions benefit from each other’s lessons working with the system and the tried-and-true adaptation and operations 
practices developed over 15 missions.  This working community allows each mission access to methods refined by 
previous missions while maintaining their independent adaptation strategy. 

A. Layered architecture for easy flight software adaptation 
VML is built in a layered architecture to easily adapt to new missions without the need for any legacy software 

changes, and only minimal additions. One prime example of this is the flight software integration of VML into the 
existing flight code base performed for the Dawn mission.  

 
The heritage sequencing capability in the flight 

software for this Orbital Sciences Corporation (OSC) 
mission was deemed inadequate for long-term 
maneuvering with a low-thrust ion engine. The VML 
Flight Component was installed to enable the mission to 
perform maneuvers and related activities using blocks 
developed by JPL. A small supervisory task controlled the 
interaction between VML and the OSC legacy code, 
incrementing the VML flight component discrete time 
clock, and passing command messages in from the 
software bus. Minor adaptation routines were emplaced to 
allow VML access to the real-time operating system, 
telemetry reporting system, and command subsystem, the 
latter requiring stripping of the VML command opcodes 
prior to dispatch via CCSDS messaging. Since the OSC 
flight code base lacked any sort of file system, a file 
buffering system was also written to allow files to be 
placed in known locations for loading as though a file 
system were present. 

The basic arrangement for adapting VML to an existing 
code base is shown in Figure 8. Note the 
intercommunication between command dispatch and 
commanding software, a telemetry interface, and interfaces 
for real-time operating system routines, file access, and 
clock reading, which constitute the majority of needed 
interactions. Due to the layered architecture, VML works in the same fashion when installed into any legacy 
software systems as it does for the as-flown Lockheed-Martin and Orbital Sciences missions. 

B. Instant Adaptation 
VML allows a set of known processes and products to be instantly specified when a mission choses it. A basic 

adaptation of VML can be installed in the ground system within a few hours. Flight and ground software developers 
can immediately begin working with the system, identifying interfaces and even developing sequences. By 
providing a readily-available baseline system, developers can more quickly concentrate on the unique aspects of the 
system that require more attention, rather than spending time and resources recreating typical capabilities. 

C. Cloning 
A more complex adaptation can be developed by selectively cloning a similar previous mission down to the 

commands and telemetry. For instance, missions using Lockheed-Martin spacecraft buses have a highly refined 
primary adaptation that evolves from mission to mission to accommodate evolution of their spacecraft product line.  

 
Figure 8: Typical layered architecture code 
adaptation between VML flight component 
and legacy flight code 
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D. Product reuse 
In the same way that cloning a similar mission’s adaptation can speed early adaptation, so can reuse of well-

tested blocks. For similar missions, blocks can be copied and then adjusted for the new mission via minor tweaks. 
As the experience base with VML has grown, a collection of multi-mission blocks has grown as well. Methods for 
commanding difficult activities have been noted and advice for future users documented. Because VML is multi-
mission by its nature, its users can share knowledge on missions with little or no commonality, e.g. an EDL mission 
vs. Spitzer, or missions built by different spacecraft developers. 

VIII. Looking Ahead: What's Next 
The future of flight/ground integration is bright when using VML. VML capabilities have been enhanced in 

order to get missions started quickly, improve ease of configuration, reduce the embedded memory footprint, expand 
capabilities, and simplify implementation of operational systems. Mechanisms for these improvements include 
human-readable ASCII commands, VML-specific standardized configuration tools, and the ability for operators to 
create expert systems built from state machines. 

A. ASCII commands and reduced embedded memory footprint 
The traditional JPL process is to use a complex database and tool set to produce all combinations of commands 

with their parameters, and track each individual command as a binary form ready for uplink. As the database is 
updated, new command files with incremented revision numbers are produced, maintaining the old command 
revisions for use with older flight 
software builds. The result is a large 
number of files, typically numbering in 
the hundreds of thousands, with the 
potential to radiate out-of-date 
commands to the spacecraft, or to fail to 
update testing scripts to use the latest 
version of commands. VML ASCII 
commands implement a less complex 
mechanism for building and managing 
spacecraft commands, providing distinct 
advantages over ground-built binaries. 
A comparison between ground-built 
binaries and VML-translated ASCII 
commands is shown in Figure 9. 

Since the VML flight component is 
required to dynamically build 
commands onboard the spacecraft, it 
contains a complete representation of all 
valid commands, including names, 
opcodes, data sizing, ordering, 
parameter ranges, state translations, etc. 
The VML 3.0 command database and 
data translation tools produce the 
command representation map compiled 
into the VML flight component. All the 
ground need do is radiate the human-
readable ASCII version of the command to the VML flight component, which will validate and translate the 
command using its onboard command definitions, and pass the resulting binary on to the flight software for dispatch 
and processing. Ground operations testing scripts need only call out the actual ASCII representation of the command 
without worrying about revisions, since the spacecraft will always have the ability to translate the command into a 
binary form compatible with itself. This eliminates the non-value-added effort of updating scripts when database 
releases occur, and the risks associated with missing such an update. 

Another advantage to the ASCII command approach is that only a rudimentary commanding capability is 
needed, which can be as simple as using a command line capture program that forwards the resulting characters over 
a Unix TCP/IP socket to the uplink flight software. Simplicity is particularly useful early in the software 

 
Figure 9: Traditional JPL binary command flow large 

combinations of parameters and revision tags in uplinkable 
binary files vs. simplified VML 3.0 ASCII command flow and 
onboard command building 
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development cycle before elaborate operations environments are available, or for low-budget technology 
demonstrations intended only for the lab. The ASCII commanding also can be embedded directly in user interface 
elements, including MatLab controls. Several projects in development are currently using this capability, including 
Resource Prospector Mission, AutoNav development, and the NASA SBIR phase 2 I-SPAREX project13. 

B. Reactive sequencing and state machine expert systems 
The response of a sequence to environmental conditions that cannot be predicted via time is called reactive 

sequencing. The technique was first created for the Spitzer Space Telescope in order to use the settled state of the 
observatory as a precondition to imaging after a slew. The technique was also used extensively during Phoenix EDL, 
which needed to wait on conditions for parachute deployment, heat shield jettison, backshell separation, and 
touchdown. 

VML state machines are the culmination of reactive sequencing, using variable values as preconditions to taking 
transitions between states. State machines can't be considered time-ordered sequences: they are reactive logic 
constructs capable of autonomous decision-making within a well-defined domain. Placing autonomy into the 
sequencing domain rather than into the flight software domain makes the behavior of the resulting expert system 
visible. It also simplifies changing the expert system: merely by placing new files onboard with new state machine 
definitions, the system can be updated to reflect changes in the environment or the spacecraft. If needed, entirely 
new autonomous capabilities can be incorporated into the spacecraft without changing any flight software. 

To date, the most extensive expert systems implemented in VML state machines have been related to spacecraft 
navigation controlling and sequencing JPL's AutoNav7 software. These applications include autonomous comet / 
asteroid touch-and-go technical demonstrations12, lunar landing simulation, halo orbit emulation with hardware in 
the loop, and autonomous rendezvous and docking for a Mars sample return mission16. Additional applications using 
state machines include coordinating complex instrument inter-activities on the Resource Prospector Mission, 
surveying for water on the moon and demonstrating oxygen production from regolith15. 

C. Design pattern flexibility 
The design pattern for autonomous onboard operations, in particular, must stay flexible. VML 3.0 provides the 

fundamental capabilities for supporting many kinds of autonomous expert systems with coordinated state machines 
that work together as an ensemble to run elements of the mission. Coupled with other VML capabilities such as 
matrix math operations, logic constructs, insight into on-board telemetry values, and ground interaction via global 
variable values, VML offers an ideal environment for adapting existing implementations to new mission needs. 

IX. Conclusion 
Operability has been an ongoing problem in mission development. As systems become more complex, operating 

them has also become more complex. Making appropriate choices about mission capabilities can mean the 
difference between an operable system and one that requires constant attention. In an era of tight budgets and 
reduced operations staff, operable systems become more than important - they are critical. VML is a flexible, 
customizable solution to a number of operations challenges, and allows operations work to begin at mission 
inception, when operability considerations can have the greatest impact. 
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